跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱玟憲
研究生(外文):Wen-Hsien Chu
論文名稱:多視訊串流在無線區域網路之傳輸最佳化研究
論文名稱(外文):The study of optimal transmissionfor multiple streaming videos over WLAN
指導教授:張寶基
指導教授(外文):Pao-Chi Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:119
中文關鍵詞:無線網路視訊串流自動重送機制
外文關鍵詞:ARQstreaming802.11 WLAN
相關次數:
  • 被引用被引用:2
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
近年來,由於無線網路技術的蓬勃發展,加上多媒體應用快速普及與資料編解碼技術成熟,使得無線網路結合影音多媒體以提供各式多樣化服務已是通訊技術中一項重要的必然趨勢。但由於無線通道的傳送品質具有明顯的不可靠性,使得影音多媒體服務在無線網路上的傳送充滿挑戰性,而使用過小或過大的封包長度均會降低頻寬使用率。此外,由於視訊編碼的特性而造成不同型態之視訊封包具不同重要性,因此必須分別加以保護以提升多媒體接收品質。
為解決上述的問題,本論文之研究共分兩部分:第一部分提出在無線網路環境下,多個使用者使用視訊服務的封包最佳傳輸機制。其依據無線網路的通道狀況、檔頭額外負荷、輪詢排程延遲、傳輸延遲與使用人數等因素,利用數學分析而推導出最佳封包長度的封閉解,以有效提升頻寬使用率;第二部分提出一套具優先權考量的共享式自動重送機制(S-ARQ),以保護不同型態與重要性之視訊封包。S-ARQ則依據無線環境的通道現況,利用ARQ權杖分享的觀念,動態而有彈性地分配重送次數給不同重要性之視訊封包,以達到較佳的接收品質。模擬結果顯示,在IPv4/IPv6 IEEE 802.11 b/a/g/e等網路的各種不同錯誤狀況中,利用本論文所決定之最佳封包長度進行資料的封裝時,均使網路端頻寬使用量達到最大。以此最佳封包長度為基礎,再配合使用S-ARQ機制,將可有效提升視訊接收品質1至2.5 dB。
Video applications over wireless networks exhibit great potential due to the tremendous progress of wireless network development and video compression techniques. However, the variant wireless channel conditions significantly increase the challenge of providing effective packetization and unequal error protection. Basically, the packetization work is a tradeoff between the header overhead and the packet error rate for determining an efficient packet size. On the other hand, the property that video packets with different types in the encoding process have different significance should be considered to provide an effective unequal error protection.
This thesis proposes an optimal transmission strategy for delivering video data over WLAN environment in the case of multi-users. The proposed framework includes two major parts: an optimal packet size determination method and a shared ARQ mechanism. The optimal packet size is obtained based on the current error situation of WLAN, header overhead, scheduling delay, transmission delay, and the number of users, for achieving the maximum bandwidth utilization. A mathematic closed form of the optimal packet size is derived. The shared ARQ mechanism introduces a share concept for the retransmission opportunities of different video frames and dynamically allocates these retransmission opportunities based on their importance. Simulation results show that using the proposed mechanisms can achieve the maximum bandwidth utilization in various WLAN environments with different IP implementations, including IPv4/IPv6, over IEEE 802.11b/a/g/e networks. Moreover, integrating with the optimal transmission strategy, the proposed shared ARQ mechanism can improve the received PSNR up to 2.5dB.
第一章 緒論 1
1.1研究背景與動機 1
1.2 相關研究 3
1.3 提出之機制與主要貢獻 6
1.4 論文架構 7
第二章 視訊串流在無線區域網路上之應用 8
2.1 視訊串流之技術簡介 9
2.2 MPEG-4視訊壓縮技術及特性 11
2.3 IPv6新一代網際網路 15
2.3.1 IPv6檔頭介紹 16
2.3.2 IPv6 訊務等級 17
2.4 IEEE 802.11無線區域網路媒體存取控制層 19
2.4.1 分散協調式功能(DCF) 21
2.4.2 集中協調式功能(PCF) 23
2.4.3 混合協調式功能(HCF) 25
2.4.4 IEEE 802.11 b/a/g 30
2.5 MPEG-4網路視訊封裝機制 31
2.5.1 MPEG-4與RTP 32
2.5.2 MPEG-4視訊封裝演算法 33
2.6自動重送機制(ARQ) 36
2.6.1 Stop-and-wait ARQ 37
2.6.2 Block ACK ARQ與No ACK ARQ 38
第三章 多使用者在WLAN之最佳封包長度與流量討論 42
3.1 IEEE 802.11無線區域網路之錯誤模式分析 43
3.2多使用者之封包排程分析 45
3.3多使用者在IEEE 802.11 PCF之最佳封包長度討論 48
3.3.1 PCF模式之分析 48
3.3.2最佳封包長度之計算 52
3.4多使用者在IEEE 802.11e HCF之最佳封包長度討論 54
3.4.1 HCF模式之分析 54
3.4.2最佳封包長度之計算 57
3.5 IEEE 802.11e之流量分析 58
第四章 視訊封包封裝與自動重送機制 63
4.1系統架構 64
4.1.1視訊串流伺服器 65
4.1.2 IEEE 802.11擷取點 66
4.2視訊封包封裝機制 68
4.3多使用者下之自動重送機制分析 70
4.3.1固定次數ARQ 70
4.3.2優先權ARQ 75
4.3.3共享式ARQ 76
第五章 實驗結果與討論 81
5.1 封包封裝機制對於有效頻寬之影響 81
5.1.1模擬環境和參數設定說明 82
5.1.2 多使用者之模擬結果與說明 85
5.1.3 單一使用者之模擬結果與說明 98
5.1.4 SW-ARQ與Block ACK ARQ之效能比較 103
5.2 自動重送機制對於視訊品質的影響 105
5.2.1模擬環境和參數設定說明 105
視訊編碼器參數設定 105
無線網路參數設定 106
5.2.2 不同自動重送機制之視訊品質比較 107
第六章 結論 111
參考文獻 113
附錄A 最佳封包長度之推導 117
[1]IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Standard, IEEE, Aug. 1999.
[2]IEEE 802.11, “Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements for Quality of Service (QoS),”Draft 10.0, IEEE, Sep. 2004.
[3]ISO/IEC JTC1/SC29/WG11, “Information Technology-Coding of Audio-Visual Objects, Part 1: System, Part 2: Visual, Part 3: Audio,” FCD 14496, Dec. 1998.
[4]ISO/IEC JTC1/SC29/WG11, “MPEG-4 Video Verification Model version 18.0,” N3908, Jan. 2001.
[5]M. Schwartz, “Telecommunication Networks: Protocols, Modeling and Analysis,” Addision-Wesley, pp. 119-135, Mar. 1987.
[6]S. Lin, D. Costello, and M. Miller, “Automatic-repeat-request error-control schemes,” IEEE Communications Magazine, Dec. 1984.
[7]A. Doufexi, D. Redmill, D. Bull and A. Nix, “MPEG-2 Video Transmission Using the HiperLAN/2 WLAN Standard,” IEEE Trans. Consumer Electron, vol. 47, no. 3, pp. 354-363, Aug. 2001.
[8]S. Wang, H. Zheng, and J.A. Copeland, “An error control design for multimedia wireless networks,” IEEE VTC 2000-Spring Tokyo, May 2000.
[9]C.C. Liu and S.S. Chen, “Providing unequal reliability for transmitting layered video streams over wireless networks by multi-ARQ schemes,” ICIP Image Processing, Oct. 1999.
[10]P. Bucciol, E. Masala and J. C. De Martin, “Perceptual ARQ for H.264 Video Streaming over 3G Wireless Networks”, Proceedings of IEEE Int. Conf. on Communications (ICC), vol. 3, pp. 1288-1292, June 2004.
[11]P. Bucciol, G. Davini, E. Masala, E. Filippi and J.C. De Martin, “Cross-Layer Perceptual ARQ for H.264 Video Streaming over 802.11 Wireless Networks”, Proceedings of IEEE GLOBECOM, Dallas, TX, November-December 2004, vol. 5, pp. 3027-3031.
[12]Q. Li and M. van der Schaar, “Providing Adaptive QoS to Layered Video over Wireless Local Area Networks through Real-Time Retry Limit Adaptation,” IEEE Trans. Multimedia, Apr. 2004.
[13]E. Modiano, “Data link protocols for LDR MILSTAR communications,” Lincoln Laboratory, Communications Division Internal Memorandum, Oct. 1994.
[14]E. Modiano, “An adaptive Algorithm for Optimizing The Packet Size Used in Wireless ARQ Protocols,” Wireless Network, pp. 279-286, May 1999.
[15]M. Smadi and B. Szabados, “Error recovery service for IEEE 802.11b protocols via adaptive forward error correction and dynamic packet sizing,” Electrical and Computer Engineering, May 2004.
[16]J. Yin, X. Wang and D. P. Agrawal, “Optimal Packet Size in Error-prone Channel for IEEE 802.11 Distributed Coordination Function,” Proc. The 2004 IEEE Wireless Communications and Networking Conference (WCNC’04), 21-25, March 2004.
[17]I.G. Lee, S.R. Yoon and S.C. Park, “Throughput analysis of IEEE 802.11e wireless LANs and efficient block ack mechanism,” IEEE International Symposium on Volume 1, Oct. 2004.
[18]M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit Round-Robin,” IEEE Trans. Networking, vol. 4, no. 3, pp. 328-333, Jun. 1996.
[19]林勤偉, “視訊隨選網路上的視訊訊務描述與管理,” 國立中央大學通訊工程研究所碩士論文, 中華民國九十一年六月.
[20]S. S. Kanhere and H. Sethu, “On the Latency Bound of Deficit Round Robin,” in Proc. IEEE International Conference on Computer Communications and Networks, pp. 548-553, Oct. 2002.
[21]I. Moccagatta, S. Soudagar, J. Liang, and H. Chen, “Error-Resilient Coding in JPEG-2000 and MPEG-4,” IEEE J. Select. Areas Commun., vol. 18, no. 6, pp. 899-914, Jun. 2000.
[22]K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,” RFC 2474, Dec. 1998.
[23]K. Nicholsand K. Poduri, “An Expedited Forwarding PHB,” RFC 2598, Jun. 1999.
[24]J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB Group,” RFC 2597, Jun. 1999.
[25]IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer Extension in the 2.4 GHz Band,” Standard, IEEE, Sep. 1999.
[26]IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band,”Standard, IEEE, Sep. 1999.
[27]IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 4:Further Higher Data Rate Extension in the 2.4 GHz Band,”Standard, IEEE, Jun. 2003.
[28]黃能富 著, “區域網路與高速網路,” 維科出版社, 中華民國八十七年六月.
[29]J.Y Yeh and C. Chen, “Support of Multimedia Services with the IEEE 802.11 MAC Protocol,” in Communications, 2002. ICC 2002. IEEE International Conference, vol. 1, pp. 600-604, May 2002.
[30]S. Choi, J. del Prado, N Sai Shankar, and S. Mangold, “IEEE 802.11e Contention-Based Channel Access (EDCF) Performance Evaluation,” in Communications, 2003. ICC 2003. IEEE International Conference, vol. 2, pp. 1151-1156, May 2003.
[31]S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz and L. Stibor, "IEEE 802.11e Wireless LAN for Quality of Service", in Proceedings of the European Wireless, vol. 1, pp. 32-39, Florence, Italy, Feb. 2002.
[32]AVT Working Group, H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications,” RFC 1889, Jan. 1996.
[33]Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, H. Kimata, “RTP Payload Format for MPEG-4 Audio/Visual Streams,” RFC 3016, Nov. 2000.
[34]J. van der Meer, Philips Electronics, D. Mackie, V. Swaminathan, D. Singer, P. Gentric, “RTP Payload Format for Transport of MPEG-4 Elementary Streams,” draft-ietf-avt-mpeg4-simple-07, Feb. 2003.
[35]D. Wu, Y.T. Hou, W. Zhu, T.H. Chiang, Y.Q. Zhang and H.J. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 923-941, Sept. 2000.
[36]F.L. Leannec and G.M. Guillemot, “Error Resilient Video Transmission Over the Internet,” in SPIE Proceeding Visual Communications and Image Processing (VCIP’99), Jan. 1999.
[37]T. Turletti and C. Huitema, “RTP payload format for H.261 video streams,” RFC 2032, Oct. 1996.
[38]C. Zhu, “RTP payload format for H.263 video streams,” RFC 2190, Sept. 1997.
[39]C. Jiao, L. Schwiebert, and B. Xu, “On Modeling the Packet Error Statistics in Bursty Channels,” IEEE Conference on Local Computer Networks (LCN'02), Nov. 2002.
[40]E.N. Gilbert, “Capacity of a Burst-Noise Channel,” Bell System Technical Journal, pp. 1253-1266, Sep. 1960.
[41]J.R.Yee and E.J.Weldon, “Evaluation of the performance of error correcting codes on a Gilbert channel,” IEEE Trans. Commun., vol. 43, no 8, pp. 2316-2323, Aug. 1995.
[42]H.D.Robert, “Hybrid ARQ Schemes for Point to Multipoint Communication Over Nonstationary Broadcast Channels,” IEEE Trans. Commun., vol. 41, no 9, pp. 1379-1387, Sep. 1993.
[43]黃逸隆, “視訊封包封裝與調適性自動重送於無線區域網路之研究,” 國立中央大學通訊工程研究所碩士論文, 中華民國九十二年六月.
[44]Y. Shan and A. Zakhor, “Cross Layer Techniques For Adaptive Video Streaming Over Wireless Network,” in International Conference on Multimedia and Expo, pp. 277-280, Aug. 2002.
[45]陳紹偉, “視訊封包封裝與調適性自動重送於無線區域網路之研究,” 國立中央大學通訊工程研究所碩士論文, 中華民國九十二年六月.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top