(3.238.173.209) 您好!臺灣時間:2021/05/08 15:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳一嘉
研究生(外文):I-Chia Chen
論文名稱:5.5/14GHz壓控振盪器與髮夾式/環型耦合濾波器之研製
論文名稱(外文):Implementation of 5.5 / 14 GHz Voltage-Controlled Oscillators and Hairpin /Ring-Coupled Filters
指導教授:邱煥凱
指導教授(外文):Hwann-Kaeo Chiou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:132
中文關鍵詞:振盪器濾波器
外文關鍵詞:Voltage-Controlled OscillatorFilter
相關次數:
  • 被引用被引用:8
  • 點閱點閱:205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
近年來,由於全球通信市場蓬勃發展與手持式電子產品之流行,更推動了網際網路之設備朝向無線通訊領域發展。而射頻電路設計便是無線通訊中一個關鍵性的技術,如RF 放大器、濾波器、混波器及振盪器都是其中重要的元件,因此在無線通訊系統中,射頻電路扮演著舉足輕重的角色。本論文包含了兩個部份,第一部份為使用2.0mm GaAs HBT製程與0.15mm GaAa pHEMT製程來設計壓控振盪器電路包含5.5 GHZ交連耦合/考畢茲壓控振盪器與14GHz 單端輸出壓控振盪器;第二部份為使用FR4基板,設計2.4GHz濾波器,包含髮夾式濾波器與環型耦合濾波器。
第一部份,所設計之晶片皆採用高頻探針方式進行量測。其電路量測結果如下:對5.5 GHz壓控振盪器而言,相位雜訊在100 KHz offset小於-85 dBc/Hz,可調頻率範圍為大於500 MHz ,輸出功率為大於-6 dBm。電路以3.5 V為電源供給,功率消耗約90 mW,其晶片面積為1.5×1 。對14 GHz壓控振盪器而言,相位雜訊在100 KHz offset小於-80dBc/Hz,可調頻率範圍約為1000 MHz ,輸出功率大於-2 dBm。電路以2.2 V為電源供給,功率消耗約120 mW,其晶片面積為1.5×1 。
論文第二部份,所設計之濾波器皆採用網路分析儀進行量測,亦使用耦合係數法進一步改良帶通濾波器之效能。對2.4 GHz濾波器量測結果如下:中心頻率為2.4 GHz,比例頻帶約為10 ﹪,帶通插入損失約為-4 dB與反射損失皆小於-10 dB,實際量測與電腦模擬的結果相當吻合。
本論文均以實例進行設計與製作,並將所得之結果相互比較。此研究所獲得的經驗,可供日後設計壓控振盪器與濾波器之依據。
Recently, since the booming of wireless communication and multi-media services are getting popular, new applications such as wireless multi-media demands much fast speed and wide bandwidth. RF circuit design is one of the key technologies of the wireless communication system. The key components, such as RF amplifier, filter, mixer, and oscillator, are the most fundamental elements of the wireless system. Thus, the RF circuit technologies play an important role in the development of the wireless system. This thesis divides into two parts. The first part is the VCO design using 2.0mm InGaP HBT and pHEMT 0.15mm processes. The VCO design includes 5.5 /14 GHz voltage controlled oscillator (VCO). The second part is the 2.4 GHz filter on FR4 PCB. Hairpin and Ring-Couple filters are designed and implemented.

The VCO chips were performed on-chip measurement. The 5.5 GHz VCO obtained the phase noise of -85 dBc/Hz at 100 KHz offset, the tuning ranges of 500 MHz, and the output power of –6 dBm. The chips’ area are compact as 1.5×1 . The resulting power consumption is about 90 mW at the 3.5 V power supply. The 14 GHz VCO obtained the phase noise of -80 dBc/Hz at 100 KHz offset, the tuning range of 1000 MHz, and VCO’s output power of -2dBm. The chips area were 1.5×1 . The resulting power consumption is about 120 mW at the 2.2 V power supply.

In second part, S-parameters of the filters were measured using vector network analyzer. From the measurement result, center frequency, return loss and fractional bandwidth are about 2.4 GHz, -10 dB and 10, respectively. The measured results are good agreement with the theoretical predictions.
中文摘要………………………………………………………………………………I
英文摘要……………………………………………………………………………II
誌謝…………………………………………………………………………………III
目錄…………………………………………………………………………………IV
圖目錄……………………………………………………………………………VII
表目錄……………………………………………………………………………XIII

第一章 緒論
1-1 研究動機與相關背景……………………………………………………………1
1-2 章節概述…………………………………………………………………………2
第二章 5.5 GHz 壓控振盪器
2-1 2.0mm GaAs HBT 製程技術簡介………………………………………………4
2-2 微波振盪器設計簡介……………………………………………………………6
2-2-1 負電阻法…………………………………………………………………6
2-2-2 正回授法…………………………………………………………………9
2-2-3 電容電感振盪器………………………………………………………11
2-3 相位雜訊………………………………………………………………………13
2-3-1 相位雜訊之定義………………………………………………………13
2-3-2相位雜訊對通訊系統的影響……………………………………………15
2-4 5.5 GHz交連耦合與考畢茲壓控振盪器之設計………………………………16
2-4-1 交連耦合振盪器電路架構與原理…………………………………16
2-4-2 考畢滋壓控振盪器架構與原理………………………………………18
2-4-3 5.5 GHz壓控振盪器之設計流程與實際電路………………………19
2-5 模擬與量測……………………………………………………………………..23
2-5-1 交連耦合壓控振盪器之模擬與量測…………………………………23
2-5-2 對稱式交連耦合考畢滋壓控振盪器之模擬與量測…………………28
2-6 5.5 GHz 壓控振盪器之討論……………………………………………………33
第三章 14 GHz單端輸出壓控振盪器
3-1 0.15mm GaAs pHEMT 製程技術簡介……………………………………34
3-2 電晶體穩定度之介紹…………………………………………………………37
3-3 14 GHz單端輸出壓控振盪器之設計…………………………………………40
3-3-1 14 GHz單端輸出壓控振盪器之電路架構原理………………………40
3-3-2 14 GHz單端輸出壓控振盪器之設計流程與實際電路………………41
3-4模擬與量測……………………………………….……………………………43
3-5 14 GHz單端輸出壓控振盪器之討論…………………………………………47
第四章 2.4 GHz濾波器
4-1 濾波器之簡介…………………………………………………………….……48
4-2 耦合係數法的應用……………………………………………………………49
4-2-1 Hairpin濾波器設計……………………………………………………50
4-2-2 利用電納斜率參數表示Hairpin濾波器………………………………..50
4-2-3 Hairpin濾波器之設計流程……………………………………………53
4-2-4 擬模與量測……………………………………………………………54
4-3 準橢圓濾波器…………………………………………………………………56
4-3-1準橢圓濾波器之原理……………………………………………………56
4-3-2擬模與量測……………………………………………………………6
4-4 三等份濾波器…………………………………………………………………65
4-4-1 三等份濾波器之原理…………………………………………………65
4-4-2 模擬與量測……………………………………………………………69
4-5 髮夾式濾波器之討論…………………………………………………………73
第五章 環型耦合濾波器
5-1 基本型環型共振腔之簡介……………………………………………………74
5-1-1 環型共振腔之等效電路………………………………………………76
5-1-2 可調變之共振腔………………………………………………………82
5-2 環型耦合濾波器………………………………………………………………84
5-2-1 基本型之帶通濾波器…………………………………………………84
5-2-2 具有傳輸零點之濾波器………………………………………………87
5-2-3 環型耦合濾波器之設計流程…………………………………………89
5-2-4 模擬與量測……………………………………………………………92
5-3 環型耦合濾波器之討論………………………………………………………99
第六章 結論與未來研究方向
6-1 結論……………………………………………………………………………100
6-2 未來研究方向…………………………………………………………………101
參考文獻……………………………………………………………………………102
附錄
附錄 A 濾波器之推導………………………………………………………… 105
附錄 B MATLAB 模擬程式………………………………………………113
[1].R. Ludwig, and P. Bretchko,”RF Circuit Design Theory and Applications,” book, 1995
[2].G. Gonzales,”Microwave Transistor Amplifiers Analysis and Design,” Book, 1998
[3].羅日隆, “使用0.18 um CMOS 之 2GHz 低相位雜訊壓控振盪器,” 碩士論文, 國立東華大學,2003
[4].B. Razavi,”RF Microelectronics,” book, University of California, 1998
[5].S. M. Wu, R. Y. Liu, and W. L. Chen,”A 5.8 GHz High-Efficient Low Power Phase Noise CMOS VCO for IEEE 802.11a,” IEEE International Workshop on Chip for Real –Time Applications, vol. 30, pp. 94-97, July. 2003
[6].Y. K. Chu, and H. R. Chuang, ”A Fully Integrated 5.8 GHz U-NII Band 0.18 um CMOS VCO,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 287-289, July. 2003
[7].C. Y. cha, and S. G. Lee,”A Complementary Colpitts Oscillator in CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 3, pp. 881-887, March. 2005
[8].D. Baek, J. Kim, and S. Hong, ”A Dual-Band (13 / 22 GHz) VCO Based on Resonant Mode Switching,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 443-445, October. 2003
[9].J. G. Kim, D. H. Beak, S. Jeon, J. W. Park, and S. C. Hong,”A K-Band InGaP/GaAs HBT Balanced MMIC VCO,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 478-480, November. 2003
[10].J. G. Kim, D. H. Beak, S. Jeon, J. W. Park, and S. Hong,”A 60 GHz InGaP/GaAs HBT Push-Push MMIC VCO,” IEEE MTT-S International Microwave Symposium Digest, vo1. 2, pp. 885-888, June. 2003
[11].劉偉正, “ 應用於ISM與Ka頻段之射頻收發機前端電路研製,” 碩士論文 , 2004
[12].Y. G. Kim, H. S. Kim, J. H. Bae, J. H. Oh, and C. W. Kim,”Fully Integrated Differential VCO with Buffer Amplifier Using 0.35 um SiGe BiCMOS for C-Band Wireless RF Transceiver,” Radio and Wireless Conference, pp. 297-300, August. 2003
[13].Y. Eo, K. Kim, and B. Oh,”Low Noise 5 GHz Differential VCO Using InGaP/GaAs HBT Technology,” IEEE Microwave and Wireless Components Letters, vol. 13, pp 259-261, July. 2003

[14].M. Da, Y. H. Cho, and H. Wang,”A 5 GHz Low Phase Noise Differential Colpitts CMOS VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, pp. 327-329, May. 2005
[15].楊建中, “ 化合物半導體(砷化鎵)產業,” 期刊, 台灣工業銀行, 5 2003
[16].C. H. Lee, A. Sutono, and J. Laskar,”Development of a High-Power and High -Efficiency HBT MMIC VCO,” Radio and Wireless Conference, pp. 157-160, August. 2001
[17].莊惠如,”射頻通訊電路設計,”通訊教改書, 國立成功大學, 1999
[18].G. Vendelin, A. Pavio, and U. L. Rhode,”Microwave Circuit Design Using Linear and Nonlinear Techniques,” Wiley-Interscience, 1990
[19].G. D. Vendelin,”Design of Amplifiers and Oscillators by the S Parameter Method,” Wiley-Interscience, 1982
[20].P. Y. Chen, Z. M. Tsai, S. S. Lu, and H. Wang,”An Ultra Low Phase Noise W-Band GaAs-Based PHEMT MMIC CPW VCO,” European Microwave Conference, vol. 2, pp. 503-506, October. 2003
[21].A. Boudiaf, M. Ahdjoudj, and P. Pouvil,”Low Phase-Noise PHEMT -Based MMIC VCOs for LMDS Applications,” IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1559-1561, May. 2001
[22].B. Piernas, K. Nishikawa, and K. Araki,”A Compact and Low -Phase-Noise Ka-Band PHEMT-Based VCO,” IEEE Transactions Microwave Theory and Techniques, vol. 51, pp. 778-783, March. 2003
[23].J. Portilla, J. P. Pascua, and E. Artal,”Low-Noise Monolithic Ku-Band VCO Using Pseudomorphic HEMT Technology,” IEEE Microwave and Guided Wave Letters, vol. 7, pp. 380-382, November. 1997
[24].Y. Yamauchi, H. Kamitsuna, M. Muraguchi, and K. Osafune,”A 15 GHz Monolithic Low Phase Noise VCO Using AlGaAs /GaAs HBT,” Technical Gallium Arsenide Integrated Circuit Symposium Digest, pp. 259-262, October. 1991
[25].N. L. Wang, and W. J. Ho,” X-Band HBT VCO with High-Efficiency CB Buffer- Amplifier,” IEEE Solid-State, vol. 27, pp. 255-258, October. 1991
[26].S. Kudszus, W. H. Haydl, M. Neumann, A. Bangert, and A. Hulsmann,” Sub-Harmonically Injection Locked 94 GHz MMIC HEMT Oscillator Using Coplanar Technology.” IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1585-1588, June.1998
[27].D. M. Pozar,”Microwave Engineering,” book, University of Massachusetts at Amherst, 2000
[28].Y. Di, P. Gardner, P. S. Hall, and H. Ghafouri-Shiraz,”Multiple-Coupled Microstrip Hairpin-Resonator Filter,” IEEE Microwave and Wireless Components Letters, vol.13, pp. 532-534, December. 2003
[29].J. S. Wong,”Microstrip Tapped-Line Filter Design,” IEEE Transactions on Microwave Theory and Techniques, vol. 27, pp. 44-50, January. 1979
[30].S. Ohshima, T. Tomiyama, T. Kimpara and T. Sato,” Design and Fabrication of Superconducting Compact Filters,” Asia Microwave Conference, vol. 3, pp. 821-824, December. 1999
[31].蕭安廷,”精緻型耦合方形迴路與髮夾梳型高溫超導微波帶通濾波器,” 碩士論文, 2002
[32].Jia-Shen G. Hong, and M. J. Lancaster,”Microstrip Filters for RF/Microwave Applications,” book, Texas A&M University, 2003
[33].C. C. Yang, and C. Y. Chang,”Microstrip Cascade Trisection Filter,” IEEE Microwave and Guided Wave Letters, vol. 9, pp. 271-273, July. 1999
[34].Kai Chang,” Microwave Ring Circuits and Antennas,” book, New York, 1996
[35].林奐衡,”微波濾波器採用電感耦合網路並具有可選擇之傳輸零點之設計方法與研究,” 碩士論文, 2003
[36].F. Falcone, F. Martin, J. Bonache, R. Marques, and M. Sorolla,”Left Handed Coplanar Waveguide Band Pass Filters Based on Bi-layer Split Ring Resonators,” IEEE Microwave and Wireless Components Letters, vol. 14, pp. 10-12, January. 2004
[37].F. Falcone, F. Martin, J. Bonache, R. Marques, and M. Sorolla,”Miniaturized Coplanar Waveguide Stop Band Filters Based on Multiple Tuned Split Ring Resonators,” IEEE Microwave and Wireless Components letters, vol. 13, pp. 511-513, December. 2003
[38].F. L. Lin, and R. B. Wu,”Comparative Performance of Three Different CPW Band-Pass Filters,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 813-816, June. 1997
[39].K. Hettak, N. Dib, A. F. Sheta, and S. Toutain,”A Class of Novel Uniplanar Series Resonators and Their Implementation in Original Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 1270-1276, September. 1998
[40].B. S. Virdee, and C. Grassopoulos,”Folded Ring Microstrip Filter,” European Microwave Conference, vol, 1, pp. 151-154, October. 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔