|
[1] Lee, J.S.; Sunwoo, M.H.; Oh, S.K.,“Design of DSP instructions and their hardware architecture for a Reed-Solomon codec,” IEEE Signal Processing Systems., pp.103 – 108, Oct. 2002. [2] ESTI, “Digital Video Broadcasting (DVB); Framing Structure,Channel Coding and Modulation for Digital Terrestrial Television”, European Telecommunication Standard EN300744 v1.4.1, 2001 [3] C.K.P. Clarke, “Reed-Solomon error correction,”BBC R&D White Paper, WHP 031,July 2002. [4] Martin Bossert, “Channel Coding for Telecommunications”. John Wiley & Sons Ltd, 1999. [5] E.M. Popovici, P. Fitzpatrick, “Reed-Solomon Codes for Optical Communications”. Microelectronics, 2002. MIEL 2002. 23rd International Conference on, Volume: 2, 2002. pp.613 – 616. [6] H. Lee, “An Area-Efficient Euclidean Algorithm Block for Reed-Solomon Decoder”. VLSI, 2003. Proceedings. IEEE Computer Society Annual Symposium on , 2003. pp. 209 –210. [7] E. Berlekamp, “Algebraic Coding Theory”. New York: McGraw-Hill 1968. [8] Robert J. McEliece, “Finite Fields for Computer Scientists and Engineers”. Kluwer Academic Publishers, 1987. [9] Sergei V. Fedorenko and Peter V. Trifonov, “ Finding Roots of Polynomials Over Finite Fields,” IEEE Transactions on Communications, Vol. 50, No. 11, pp. 1709-1711, November 2002. [10] S. Lin, D. J. Costello, Jr., “Error Control Coding: Fundamentals and Applications”, Prentice-Hill, 1983. [11] E. R. Berlekamp, “Bit-Serial Reed-Solomon Encoders,” IEEE Trans. Inform. Theory, vol. IT-28, no. 6, pp. 869-874, Nov. 1982. [12] H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen, and I. S. Reed, “A VLSI Design of a Pipeline Reed-Solomon Decoder,” IEEE Transactions on Computers., vol. C-34, no. 5, pp. 393-402, May 1985. [13] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed, “VLSI Architectures for Computing Multiplications and Inverses in GF(2m),” IEEE Transactions on Computers., vol. C-34, no. 8, pp. 709-716, Aug. 1985. [14] S.T.J. Fenn, M. Benaissa, and D. Taylor, “GF(2m) multiplication and division over the dual basis,” IEEE Trans. Comput., vol. 45, no. 3, pp. 319-327, March 1996. [15] R. Furness, M. Benaissa, S.T.J. Fenn, “GF(2m) multiplication over triangular basis for design of Reed-Solomon codes,” Computers and Digital Techniques, IEE Proceedings- , vol. 145 issue 6 , pp. 437 -443, Nov 1998 [16] Wicker and Bhargava, “Reed-Solomon Codes and Their Applications,” IEEE Press, 1994. [17] I.S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields, ” J. Soc. Ind. Apple. Math. 8,pp. 200-204, June 1860. [18] Stephen B. Wicker, “Error Control Systems for Digital Communication and Storage,” Prentice Hall, 1995. [19] G. Fettweis, M. Hassner, “A Combine Reed-Solomon Encoder and Syndrome Generator with Small Hardware Complexity,” Circuits and Systems, ISCAS 92 Proceedings, vol. 4, pp. 1871-1874, 1992. [20] R. Blahut, “Theory and Practice of Error Control Codes,” Addison-Wesley Co., 1983. [21] S. Choomchuay and B. Arambepola, “Time domain algorithms and architectures for Reed-Solomon decoding,” Proc. Inst. Elect. Eng. I, Commun., Speed and Vis., vol. 140, pp. 189-196, June 1993. [22] Research on Reed-Solomon Decoder—Design and Implementation 張錫嘉 國立交通大學電子工程學係電子研究所博士論文, 2000 [23] Study on a SIP Synthesizer of Reed-Solomon Decoder Using a Fast Root Searching Circuit 黃柏涵 國立交通大學電機與控制工程研究所碩士論文, 2001
|