(3.236.231.61) 您好!臺灣時間:2021/05/15 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳偉柏
研究生(外文):Win-Po Chen
論文名稱:淡水河口與近海三維水動力模式之模擬與應用
論文名稱(外文):3-D hydrodynamic model simulate and apply in Danshuei River mouth and coastal ocean
指導教授:蔡武廷
指導教授(外文):Wu-Ting Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:83
中文關鍵詞:檢定與驗證鹽分截彎取直模式應用水動力河口與近海UnTRIM-3D模式
外文關鍵詞:Estuary and coastal seaUnTRIM-3D mo
相關次數:
  • 被引用被引用:6
  • 點閱點閱:710
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
河口及感潮河段為河川流域與近岸海洋水和物質交換所必經之道,所以對於此一河川水理狀況之瞭解可幫助預測污染物質自河川排放至近海的傳輸過程。淡水河系為台灣最大之感潮河川,其感潮河段包括三大支流,分別是大漢溪、新店溪及基隆河。淡水河系除了受潮汐與淡水流量所引起的正壓流(Barotropic flow)影響外,鹽分入侵所引致斜壓流(Baroclinic flow)是造成河口傳輸的另一重要機制。
本研究應用UnTRIM (Unstructured grid Tidal, Residual, Intertidal Mudflat)三維水動力數值模式對淡水河系及其近海進行潮流與鹽度之模擬,此模式是以不規則正交網格(Unstructured orthogonal grid)來模擬複雜的邊界外形,它的優點是可以只在重要的地方增加網格數目而不需要將整個模擬區域的網格數增加,能有效地降低電腦在模式運算中所耗費的時間。
模式演算時上游邊界分別是:城林橋(大漢溪)、秀朗橋(新店溪)以及江北橋(基隆河),淡水河外海為下游邊界。本研究先以 潮為外海邊界潮汐的驅動力,初步檢定Chezy係數( ),再以五個分潮之綜合潮做細部調整,使模式模擬結果各分潮之振幅與相位角與實測數據之調和分析結果相近。模式檢定後以2000年實測數據來驗證,以實測之振幅及相位角為外海邊界條件,各流量站實測之日流量為上游邊界條件;比較各測站之實測與模擬結果之水位、流速和鹽度以及殘餘流速之時間序列變化後,顯示本三維水動力模式之正確性。
模式經檢定與驗證後,應用於探討淡水河系於上游流量為平均流量與Q75低流量作用下之河口環流與鹽分分佈之比較;另模式亦應用於探討基隆河截彎取直前後對於基隆河殘餘流速與鹽分分佈之影響。
關鍵字:河口與近海; UnTRIM-3D模式;水動力;鹽分;檢定與驗證;模式應用;截彎取直。
The estuary is the primary conduit for the transport of water and material from its drainage basin to the coastal ocean. The ultimate fates of land-derived materials, such as pollutants, depend on the water movement in the estuaries. To predict the fate and transport of materials from land to the ocean requires the knowledge of water movement through this stretch of water body. The Danshuei River system is the largest estuarine system in Taiwan. It consists of three major tributaries: Tahan Stream, Hsintien Stream and Keelung River. In addition to the barotropic flows forced by the tide and river discharges, the baroclinic flow forced by seawater intrusion is another important transport mechanism in the Danshuei River estuarine system.
In this study, a three-dimensional hydrodynamic model (UnTRIM-3D) was used to simulate tidal current and salinity distributions in the Danshuei River estuarine system and adjacent coastal sea. The unstructured orthogonal grid in this model is adopted to fit complicated boundaries. It is flexible to permit local mesh refinements in areas of interest only and to reduce computational time.
The upstream boundaries of the computation domain are: Cheng-Ling Bridge (Tahan Stream), Hsiu-Lang Bridge (Hsintien Stream), Jiang-Bei Bridge (Keelung River) and downstream boundary is at the coastal sea. First, a single constituent tidal was used as forcing function at the coastal sea boundary for preliminary model calibration of the value of Chezy friction coefficients. The use of a single constituent tide expedites the extraction of tidal ranges from model outputs for comparison with prototype data. Five-constituent tidal was then used for fine-tune calibration by matching the observed amplitudes and phases of the five tidal constituents. Using the field data in 2000 for model verification, the model was run to simulate the prototype condition. The comparisons between model results and field data of tidal elevation, current velocity, salinity, and residual current indicate that the model is accurate and suitable for the Danshuei River estuarine system.
After the model calibration and verification, the 3D model was applied to investigate the residual circulation and salinity distributions under mean and low ( ) flow conditions. The model was also used to evaluate the effects on residual current and salinity distributions in the Keelung River due to the channel regulation of Keelung River.
Key words: Estuary and coastal sea; UnTRIM-3D model; hydrodynamic; salinity; calibration and verification; model application; channel regulation.
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 IX
第一章 導論 1
1-1 前言 1
1-2 研究目的 2
1-3 文獻回顧 3
第二章 淡水河系及近海概述與水理資料蒐集分析 6
2-1 淡水河系概況 6
2-2 淡水河近海概述 7
2-3 水文與水理等基本資料之蒐集與整理 8
2-4 實測潮位資料之分析 8
2-4-1 資料之篩選 8
2-4-2 潮位調和分析 9
2-5 潮波傳遞 10
2-6 全潮測量流速數據分析 10
第三章 模式建立 16
3-1 基本方程式 16
3-2 邊界條件 18
3-2-1 自由液面 18
3-2-2 底部 19
3-2-3 上游邊界 19
3-3 紊流閉合模式 20
3-3-1垂直紊流黏滯係數垂直紊流擴散係數 20
3-3-2水平紊流黏滯係數水平紊流擴散係數 21
3-4 f平面 21
3-5 數值網格的產生 21
第四章 模式之檢定與驗證 26
4-1 模式之初步檢定 26
4-2 綜合潮之細部檢定 28
4-3 模式之驗證 28
4-3-1 水理之驗證 28
4-3-2 鹽度之檢定 29
4-5 河口殘餘流與環流之分析 30
第五章 模式應用 66
5-1 流量與平均流量下之殘餘流速與鹽分入侵終點 66
5-2 基隆河截彎取直對殘餘流速與鹽度之影響 67
第六章 結論 81
參考文獻 83
(1)許時雄,「淡水河下游感潮變量流之研究」,水利復刊第七期,(1969)。
(2)歐陽嶠暉,「淡水河水系水污染調查及河川自淨能力之研究」,台灣水利,第19卷3期,(1971)。
(3)顏清連、許銘熙,「河川體系變量流之數值模擬」,台大土木工程學研究報告,水利7105,(1982)。
(4)經濟部水資會,「淡水河流域河川水質數學模式之研究」,(1983)。
(5)顏清連、王如意、朱紹鎔、許銘熙、呂建華、張守陽,「基隆河水理特性之研究」,水利7203,國立台灣大學土木工程學研究所,(1984)。
(6)陳樹群,「河川動態水質數學模式之建立與應用」,碩士論文,國立台灣大學土木工程學研究所,(1984)。
(7)連上堯,「枯水期基隆河水理與水質模式之研究」,碩士論文,國立台灣大學農業工程學研究所,(1988)。
(8)洪政豐,「潮流對河川污染質影響之研究」,碩士論文,國立成功大學水利及海洋工程研究所,(1988)。
(9)許銘熙、張尊國、柳文成、連上堯,「基隆河水理暨水質特性之研究(一)截流系統對河川水理之影響」,行政院國科會專題研究計畫報告,(1989)。
(10)張瑞津、石再添,「淡水河下游感潮的研究」,地理學研究第13期,(1989)。
(11)陳筱華,「河川污染特性及水質數學模式之探討─以基隆河為例」,碩士論文,國立台灣大學環境工程學研究所,(1989)。
(12)許銘熙、張尊國、柳文成、連上堯,「基隆河水理暨水質特性之研究(二)截流系統對河川水質之影響」,行政院國科會專題研究計畫報告,(1990)。
(13)柳文成,「截流系統對基隆河水質影響之研究」,碩士論文,國立台灣大學農業工程學研究所,(1990)。
(14)王順明,「基隆水質監測站網之優選與模擬」,碩士論文,國立台灣大學環境工程學研究所,(1992)。
(15)陳建維,「基隆河截彎取直對鹽分分佈影響之模擬」,碩士論文,國立台灣大學環境工程學研究所,(1994)。
(16)李鴻源,「淡水河感潮特性之探討(二)」,國立台灣大學水工試驗所,(1995)。
(17)許銘熙、郭振泰、郭義雄、柳文成,「淡水河系潮流、河口環流與鹽分佈之研究(一)、(二)」,國立臺灣大學水工試驗所研究報告239及273號,(1996, 1997)。
(18)柳文成、許銘熙、郭義雄、郭振泰,「淡水河河口環流特性之研究」,台灣水利,第46卷第一期,pp. 33-42,(1998)。
(19)許銘熙、郭義雄、郭振泰、柳文成,「淡水河感潮段垂直二維水理與水質動態傳輸模式(一)、(二)」,行政院國科會專題計畫研究成果報告,(1998, 1999)。
(20)劉景毅,「二維與三維水理數值模式在淡水河海域之應用與比較」,中國土木水利工程學刊,第11卷,第三期,pp. 579-587,(1999)。
(21)Blumberg, A, F., 1975. A numerical investigate into the dynamics of estuarine circulation. Technical Report No. 91, Chesapeake Bay Institute. The Johns Hopkins Univ.
(22)Blumberg, A. F., Khan, L. A. and John, J. St., 1999. Three-dimensional hydrodynamic model of New York harbor region. Journal of Hydraulic Engineering, ASCE, 125(8), pp.799~816.
(23)Blumberg, A. F. and Mellor, G. L., 1987. A description of a three-dimensional coastal ocean circulation model. Three-dimensional coastal ocean Models, Heaps, N. S. (ed.), American Geophysical Union, pp.1~16.
(24)Blumberg, A. F., Ahsan, Q., Li, H., Kaluarachchi, I. D. and Lewis, J. K., 2001. Circulation, sediment and water quality modeling in the northern Gulf of Mexico, Proceedings of the World Water and Environmental Resources Congress, Orlando, Florida.
(25)Blumberg, A. F. and Mellor, G. L., 1980. A coastal ocean numerical model, In Mathematical Modeling of Estuarine Physics, Proceedings of an International Symposium.
(26)Bradbury, R., 1997. User’s Guide for Argus One. Argus Interware, Inc.
(27)Casulli, V., 1999. A semi-implicit finite difference method for non-hydrostatic, free-surface flows. International Journal for Numerical Methods in Fluids, 30, pp.425~440.
(28)Casulli, V. and Walter, R. A., 2000. An unstructured grid, three-dimensional model based on the shallow water equations. International Journal for Numerical Methods in Fluids, 32, pp.331~348.
(29)Chen, X. J., 2004. A Cartesian method for fitting the bathymetry and tracking the dynamic position of the shoreline in a three-dimensional, hydrodynamic model. Journal of Computational Physics, 200, pp. 749-768.
(30)Dyer, K. R., 1973. Estuaries: a physical introduction. Wiley & Sons, New York, NY, U.S.A.
(31)Dyer, K. R., 1977. Lateral circulation effects in estuaries. In Estuaries, Geophysics and the Environment, National Academic of Sciences, Washington.
(32)Elliott, A. J., 1978. Observations of the meteorological induced circulation in the Potomac Estuary. Estuarine and Coastal Marine Science, 6, pp.285~299.
(33)Hansen, D. V. and Rattray, Jr. M., 1965. Gravitational circulation in straits and estuaries. Journal of Marine Research, 23, pp.104~122.
(34)Hansen, D. V. and Rattray, Jr. M., 1966. New dimensions in estuarine classification. Limnology and Oceanography, 11, pp319~326.
(35)Hasen, D. V., 1967. Salt balance and circulation in partially mixed estuaries. In: Lauff, G. H. (ed.), Estuaries, American Associate Advance Science.
(36)Ianuiello, J. P., 1977. Tidally induced residual currents in estuaries of constant breadth and depth. Journal of Marine Research, 35, pp.735~786.
(37)Ippen, A. T. and Harleman, D. R. F., 1966. Tidal dynamics in estuaries. In: Ippen, A.T. (ed.), Estuary and Coastline Hydrodynamics, McGraw-Hill Book Co., Inc., New York, NY, pp. 493~545.
(38)Kim, S. C., Shen, J., Kim, C. S. and Kuo, A. Y., 2000. Application of VIMS HEM-3D to a macro-tidal environment. Estuarine and Coastal Modeling, Proceedings of the 6th International Conference, Spaulding, M.L. et al. (eds.) ASCE, pp.238~249.
(39)Kuo, A. Y., Hamrick, J. M. and Sisson, G. M., 1990. Persistence of residual currents in the James Estuary and its implication to mass transport. Coastal and Estuarine Studies, 38, pp.398~401.
(40)Muin, M. and Spaulding, M., 1997. Application of three-dimensional boundary-fitted circulation model to Providence River. Journal of Hydraulic Engineering, ASCE, 123(1), pp.13~20.
(41)Pritchard, D. W., 1952. Estuarine hydrography. In: Advances in Geophysics, Vol. 1, Academic Press Inc. New York, NY, pp.243~280.
(42)Pritchard, D. W., 1954. A study of the salt balance in a coast plain estuary. Journal of Marine Research, 13(1), pp.133~144.
(43)Pritchard, D. W., 1956. The dynamic structure of a coastal plain estuary. Journal of Marine Research, 15(1), pp.33~42.
(44)Wang, K. H., 1994. Characterization of circulation and salinity change in Galveston Bay. Journal of Engineering Mechanics, ASCE, 120(3), pp.557~579.
(45)Wu, J., Buchak, E. M., Edinger, J. E. and Kolluru, V. S., 2001. Simulation of cooling-water discharges from power plants. Journal of Environmental Management, 61, pp. 77-92.
(46)Zhang, Y., Baptista, A. M., Mayers, E. P., 2004. A cross-scale model for 3D baroclinic circulation in estuary-plum-shelf system: I. Formulation and skill assessment. Continental Shelf Research, 24, pp.2187~2214.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top