(3.236.214.19) 您好!臺灣時間:2021/05/09 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:廖啟勳
研究生(外文):Chi-Shiun Laio
論文名稱:地形降水對於環境條件與地形特性之敏感度測試:2維理想地形模擬研究
指導教授:楊明仁楊明仁引用關係
指導教授(外文):Ming-Jen Yang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:121
中文關鍵詞:地形降雨
相關次數:
  • 被引用被引用:9
  • 點閱點閱:301
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
摘要
台灣位於大陸性高壓和熱帶海洋高壓上,在這兩種性質極端的氣團影響之下,導致了台灣天氣的多變性,又加上台灣地勢高聳,天氣加上地勢的變化造成了台灣降水分布的差異和區域性,為了有效瞭解地形對於降水分布的影響,本研究選擇了四種降水類型(春雨、梅雨、秋雨、冬雨)的天氣特徵,作為模式的初始條件,分別對於地形特性、風速、垂直風切等作敏感度測試。
本研究發現這四種降水特性中,雨量以梅雨最大,秋雨次之,再來是秋雨,最後是冬雨;在降水極値分布上,降水極值會隨者Mm値變大而遠離山脊,隨著Mm變小而靠近山脊甚至跨越山脈。以降水效率而言,我們發現在地勢較矮的山之降水效率的增加趨勢大於地勢較高的山,且冬雨的降水效率極値會比春雨還大。而在降水分布上面,多數個案的雨量集中在迎風面,在一些零星個案中會有山頂降水和山頂強降水山後弱降水的發生;尤其以梅雨降水的個案中降水面積最大,降雨型態越多。
本研究為2維理想化地形,在未來應該朝向3維真實地形去模擬,並加強雲微物理過程對於降水影響之探討,以增進吾人對於地形降水物理機制之瞭解。
目錄
摘要………………………………………………………Ⅰ
致謝………………………………………………………Ⅱ
目錄………………………………………………………Ⅲ
圖目錄……………………………………………………Ⅴ
第一章 前言……………………………………………1
1.1研究動機…………………………………………1
1.2 文章架構…………………………………………3
1.3 文獻回顧…………………………………………4
第二章 研究方法…………………………………………7
2.1 個案描述…………………………………………7
2.1.1 春雨………………………………………7
2.1.2 梅雨………………………………………8
2.1.3秋雨………………………………………8
2.1.4 冬雨………………………………………9
2.2 資料設定……………………………………9
2.2.1 探空圖的設定……………………………9
2.2.2 穩定度的設定…………………………10
2.2.3地形高度和山脈半幅寬…………………11
2.2.4 垂直風切………………………………12
2.2.5 降水效率………………………………13
第三章 模式簡介…………………………………………14
3.1 WRF………………………………………………14
3.2 模式設定…………………………………………19
第四章 敏感度測試………………………………………21
4.1春雨………………………………………………21
4.2梅雨………………………………………………26
4.3秋雨………………………………………………31
4.4冬雨………………………………………………33
4.5 降雨類型…………………………………………35
第五章 結論………………………………………………37
參考文獻…………………………………………………41
附錄A………………………………………………………44
附錄B………………………………………………………47
附圖………………………………………………………48
參考文獻
王寶貫1997: 雲物理學初版,國立編譯館主編,渤海堂文化公司印行。
Browning, K. A., 1980: Structure, mechanism, and prediction of ographically enhanced rain in Britain. Orographic Effects in Planetary Flows; GARP Publication Series, Vol.23, 85-114.
Chen, S. -H. and Y. -L., Lin 2005: Effect moist froude number and CAPE on a conditionally unstable flow over a mesoscale mountain ridge. J. Atmos. Sci., 62,331-349.
Colle, B. A. 2004: Sensitivity of orographic precipiaition to ambient conditions and terrain geometeries: an idealized modeling perspective. J. Atmos. Sci., 61, 588-606.
Colle, B. A., B. F. Smull and M.-J., Yang, 2002: Numberical simulation of a landfalling cold front observed during COAST: Rapid evolution and responsible mechanisms. Mon. Wea. Rev., 130, 1945-1966.
Doswell C. A. III, H. E. Brooks, and R. A. Maddox 1996: Flash flood forecasting: An ingredients-based Methodology. Wea. Forecasting, 11, 560-581.
Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.
Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573pp.
Jiang, Q., and R. B. Smith, 2003: Microphysical timescales and orographic precipitation. J. Atmos. Sci., 60, 1543-1559.
Grossman, P. A., and D. R. Durran, 1984: Interaction of low-flow with the Western Ghat Mountains and offshore convection in summer monsoon. Mon. Wea. Rev., 112, 652-672.
Haltinger, G.J and R.T Williams, 1979: Numerical Prediction and Dynamic Meteorology. Wiley Publication, New York, 477 pp.
Hill, F. F., 1983: The use of average annual rainfall to derive estimates of orographic enhancement of frontal rain over England and Wales for different wind direction. J. climate., 3,113-129.
Hon, S. –Y., and H. –L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339
Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40-63.
Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232-1240.
Lin, Y. -L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of snow field in a cloud model. J. Climate Appl. Meter., 22, 1065-1092.
Li, X., C.-H. Sui, and K. –M. Lau, 2002: Precipitation efficiency in the tropical deep convective regime: A 2-D cloud resolving modeling studying. J. Meteor. Soc. Japan, 80, 205-212.
Mass, C. F., 1981: Topographically forced convergence in western Washington status. Mon. Wea. Rev., 109, 1335-1347.
Neiman, P. P., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 1468-1492.
Resiner, J., R. M. Rasmussen, and R. T. Bruintjes, 1988: Explicit forecasting of supercooled liquid water in winter storm using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071-1107.
Rogers, R. R. and M. K. Yau, 1989: A Short Course in Cloud Physics, Pergamon press, 293pp.
Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of cloud and precipitation in midlatitude cyclones. ⅩⅡ: A diagnostic modeling studying of precipitation development in narrow cloud-frontal rainbands. J. Atmos. Sci., 41, 2949-2972.
Sui, C.-H., X. Li, M.-J. Yang, and H.-L. Huang, 2005: Estimation of oceanic precipitation efficiency in cloud model. J. Atmos. Sci., revised.
Tao, W. -K., J. Simpson, and M. McCumber 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231-235.
Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔