跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 20:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李文毅
研究生(外文):Wen-Yi Lee
論文名稱:含三芽基吡咯配位基金屬錯化合物(金屬:鋯、鉿)及雙芽基酮胺配位基鎂錯化合物之合成、鑑定、反應性、及聚合的探討
論文名稱(外文):The chemistry involving tridentate pyrrolyl zirconium and hafnium complexes and monoanionic bidentate ketiminate magnesium complexes.Synthesis,characterization,reactivity,and polymerization studies
指導教授:黃瑞賢黃瑞賢引用關係
指導教授(外文):Jui-Hsien Huang
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:79
中文關鍵詞:雙芽基酮胺配位基金屬鎂錯化合物
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
三芽基吡咯衍生物金屬錯化合物(金屬:鋯、鉿)
一系列含三芽基吡咯衍生物的六配位金屬錯化合物(金屬:鋯、鉿)已經被合成與鑑定。取M(NEt2)4 (M = Zr, Hf) 與一倍量的BDMAMPH
於正戊烷下反應四小時,合成M[BDMAMP](NEt2)3 (1, M = Zr;2, M = Hf)。隨後將1與2分別加入一倍量的2,6-di-tert-butyl phenol與三倍量的tert-butanol即可得到相關的金屬烷氧錯化合物M[BDMAMP] (OC6H3-2,6-tBu2)(NEt2)2 (3, M = Zr;4, M = Hf)與M[BDMAMP](OtBu)3 (5, M = Zr;6, M = Hf)。若將1、2加入三倍量的吡咯,經由脫去三倍量的二乙基胺,即可得到M[BDMAMP](NC4H4)3 (7, M = Zr;8, M = Hf)。所有新合成的金屬錯化合物均有利用1H及13C NMR進行光譜的鑑定,而3、4及6則有利用X-ray進行結構上的鑑定。所有的錯化合物均有加入環己內酯(ε- caprolactone)進行催化反應,以探討其催化活性與反應性。

雙芽基酮胺配位基金屬鎂錯化合物
一系列含雙芽基酮胺配位基金屬鎂錯化合物已經被合成與鑑定。將MgBu2分別以1:2或1:3倍量的酮胺配位基進行反應,即可經由脫去丁烷,而得到Mg[OCMeCHCMeNAr]2 (9) 與 Mg[OCMeCHCMeNAr]2 (OCMeCHCMeNHAr) (10)。若更進一步加入電子提供能力較強的吡啶至9或10中,便可得到吡啶配位鍵結到中心金屬鎂的錯化合物Mg[OCMeCHCMeNAr]2(C5H5N) (11)。錯化合物9-11均有進行NMR光譜的探討與X-ray結構上的鑑定,並進一步與環己內酯(ε- caprolactone)進行開環聚合反應。

雙芽基吡咯衍生物配位基部分:PhNCS插入M-N鍵的反應(金屬:鋯、鉿)
取起使物 M(DMAMP)2(NEt2)2 (M = Zr, Hf)加入兩倍量的PhNCS於乙醚下進行反應,即可合成以N、S鍵結到中心金屬,且π電子均勻分布在NC(NEt2)S基團的錯化合物M[DMAMP]2[PhNC{NEt2}S]2 (12, M = Zr;13, M = Hf)。類似的,若將M(NEt2)4直接和四倍量PhNCS在甲苯中反應則可得到八配位的M[PhNC(NEt2)S]4 (14, M = Zr;15, M = Hf)。
錯化合物12-15均有利用1H及13C NMR加以鑑定,化合物12-14 則有利用適當溶劑再結晶,將得到的晶體利用X-ray單晶繞射鑑定其分子結構。
Abstract
Tridentate Pyrrolyl Zirconium and Hafnium Complexes:
Six-coordinated zirconium and hafnium complexes stabilized by tridentate substituted pyrrolyl lignad (BDMAMPH) have been synthesized and characterized. Tris(diethylamido)zirconium and hafnium compounds
M[BDMAMP](NEt2)3 (1, M = Zr;2, M = Hf) have been prepared in high yield by reacting M(NEt2)4 (M = Zr, Hf) with 1 equiv. of BDMAMPH in pentane via deamination. Reactions of 1 equiv. of 2,6-di-tert-butyl phenol with M[BDMAMP](NEt2)3 (1, M = Zr;2, M = Hf) in pentane afford M[BDMAMP](OC6H3-2,6-tBu2)(NEt2)2 (3, M = Zr;4, M = Hf). Similarly, treatment of metal amides M[BDMAMP](NEt2)3 (1, M = Zr;2, M = Hf) with 3 equiv. of tert-butanol in pentane resulted in the elimination of diethylamine along with the formation of the corresponding metal alkoxides M[BDMAMP](OtBu)3 (5, M = Zr;6, M = Hf) in moderate yield. Also, addition of 3 equiv. of pyrrole with M[BDMAMP](NEt2)3 (1, M = Zr;2, M = Hf) in pentane generated tetra-pyrrolyl metal compounds M[BDMAMP] (NC4H4)3 (7, M = Zr;8, M = Hf). All the new compounds were characterized by 1H and 13C NMR spectroscopy and the structures of 3, 4 and 6 have also been determined by X-ray crystallographic studies. The methyl fragments of the dimethylaminomethyl groups in compounds 3 and 4 show two broad singlets at room temperature due to the slow fluxionality of the methyl groups. All the metal complexes have been studied as catalysts for the ring-opening polymerization(ROP) of e-caprolactone.

Monoanionic Bidentate Ketiminate Magnesium Complexes:
A series of magnesium complexes featuring with the ketiminate ligand, OCMeCHCMeNHAr(Ar = 2,6-iPr2C6H3), have been prepared and characterized spectroscopically and structurally. Reactions of OCMeCHCMeNHAr(Ar = 2,6-iPr2C6H3) with dibutylmagnesium in 1:2 or 1:3 molar ratio generate four- and five-coordinated magnesium complexes Mg[OCMeCHCMeNAr]2 (9) and Mg[OCMeCHCMeNAr]2 (OCMeCHCMeNHAr) (10). Further treatment of excess pyridine with Mg[OCMeCHCMeNAr]2 (9) or Mg[OCMeCHCMeNAr]2 (OCMeCHCMeNHAr) (10) affords bis(ketiminate) magnesium complex with one equiv. of coordinated pyridine, Mg[OCMeCHCMeNAr]2(C5H5N) (11). All of the structures of those magnesium complexes have been determined by X-ray crystallography. Complex 9 exhibits a distorted tetrahedron structure, while complexes 10 and 11 reveal slight distorted trigonal bipyramidal structures. Compounds 10 and 11 can initiate and subsequently sustain ring-opening polymerization(ROP) of e-caprolactone.

Bidentate Substituted Pyrrolyl Ligands:The insertion reaction of phenyl isothiocyanate into M-N bond (M = Zr, Hf)
Treatment of metal amides M(DMAMP)2(NEt2)2 (M = Zr, Hf) with 2 equiv. of phenyl isothiocyanate at room temperature in diethyl ether result in the PhNCS being inserted into Zr-NEt2 or Hf-NEt2 bonds to generate M[DMAMP]2[PhNC{NEt2}S]2 (12, M = Zr;13, M = Hf). Similarly, reacting M(NEt2)4 (M = Zr, Hf) with 4 equiv. of PhNCS in a toluene solution at room temperature result in the PhNCS inserted into M-N bonds, and form eight coordinated zirconium and hafnium Complexes M[PhNC(NEt2)S]4 (14, M = Zr;15, M = Hf) in high yield. All the new compounds have been characterized by 1H and 13C NMR spectroscopy and the structures of 12, 13 and 14 have also been determined in X-ray crystallographic studies. The N-C and C-S bond distances of PhNC(NEt2)S fragments are both in the range of partially double bond, indicating that the π electrons of the PhNC(NEt2)S fragments are equally delocalized in the NC(N)S core.
章節 頁次
中文摘要
英文摘要
第一章 緒論 1
§ 1-1 前言 1
§ 1-2 烯類的聚合反應 2
§ 1-3 開環聚合反應 5
第二章 含三芽基吡咯衍生物金屬錯化合物系統(金屬:鋯、鉿) 12
§ 2-1 含三芽基吡咯衍生物金屬錯化合物之合成與鑑定 12
§ 2-2 含三芽基吡咯衍生物金屬錯化合物之晶體結構探討 16
§ 2-3 含三芽基吡咯衍生物金屬錯化合物之開環聚合反應 21
§ 2-4 結論 22
第三章 含雙芽基酮胺配位基金屬鎂錯化合物系統 23
§ 3-1 含雙芽基酮胺配位基金屬鎂錯化合物之合成與鑑定 23
§ 3-2 含雙芽基酮胺配位基金屬鎂錯化合物之晶體結構探討 28
§ 3-3 含雙芽基酮胺配位基金屬鎂錯化合物之開環聚合反應 33
§ 3-4 結論 34
第四章 含雙芽基吡咯衍生物金屬錯化合物PhNCS插入M-N
鍵的反應系統 35
§ 4-1 含雙芽基吡咯衍生物金屬錯化合物:PhNCS插入M-N
鍵的合成與鑑定 35
§ 4-2 含雙芽基吡咯衍生物金屬錯化合物:PhNCS插入M-N鍵的晶體結構探討 37
§ 4-3 結論 42
第五章 實驗部分 43
§ 5-1 一般實驗 43
§ 5-2 物理性質的測量 43
§ 5-3 金屬錯合物之合成 44
5-3-1 合成Zr[BDMAMP](NEt2)3 (1) 44
5-3-2 合成Hf[BDMAMP](NEt2)3 (2) 45
5-3-3 合成Zr[BDMAMP](OC6H3-2,6-tBu2)(NEt2)2 (3) 46
5-3-4 合成Hf[BDMAMP](OC6H3-2,6-tBu2)(NEt2)2 (4) 47
5-3-5 合成Zr[BDMAMP](OtBu)3 (5) 48
5-3-6 合成Hf[BDMAMP](OtBu)3 (6) 48
5-3-7 合成Zr[BDMAMP](NC4H4)3 (7) 49
5-3-8 合成Hf[BDMAMP](NC4H4)3 (8) 50
5-3-9 合成Mg[OCMeCHCMeNAr]2 (9) 51
5-3-10 合成Mg[OCMeCHCMeNAr]2(OCMeCHCMeNHAr) (10) 52
5-3-11 合成Mg[OCMeCHCMeNAr]2(C5H5N) (11) 53
5-3-12 合成Zr(DMAMP)2[PhNC(NEt2)S]2 (12) 54
5-3-13 合成Hf(DMAMP)2[PhNC(NEt2)S]2 (13) 55
5-3-14 合成Zr[PhNC(NEt2)S]4 (14) 56
5-3-15 合成Hf[PhNC(NEt2)S]4 (15) 57
§ 5-4 ε-caprolactone的開環聚合反應 58
Reference 59
附錄 X-ray Data

圖次 頁次
圖2-2-1 The molecular structure of complex 3 18
圖2-2-2 The molecular structure of complex 4 18
圖2-2-3 The molecular structure of complex 6 19
圖 3-1-1 錯化合物10的1H-13C HSQC NMR光譜 26
圖3-2-1 The molecular structure of complex 9 29
圖3-2-2 The molecular structure of complex 10 32
圖3-2-3 The molecular structure of complex 11 32
圖4-2-1 The molecular structure of complex 12 38
圖4-2-2 The molecular structure of complex 13 39
圖4-2-3 The molecular structure of complex 14 41

表次 頁次
表2-2-1 Selected Bond Distances (Å) and Angles (°) for Complexes 3 and 4 16
表2-2-2 Selected Bond Distances (Å) and Angles (°) for Complex 6 19
表2-3-1 錯化合物3–8對環己內酯的開環聚合反應 21
表3-2-1 Selected Bond Distances (Å) and Angles (°) for Complex 9 29
表3-2-2 Selected Bond Distances (Å) and Angles (°) for Complexes 10 and 11 30
表3-3-1 錯化合物10、11對環己內酯的開環聚合反應 33
表4-2-1 Selected Bond Distances (Å) and Angles (°) for Complexes 12 and 13 39
表4-2-2 Selected Bond Distances (Å) and Angles (°) for Complex 14 40

式次 頁次
Scheme 1-1 第四族metallocenes與MAO的活化途徑 1
Scheme 1-2 β-二酮胺、酮胺和希夫鹼等系統配位基 2
Scheme 1-3 Coates發表以Schiff Base為配位基的鈦金屬錯化合物對於乙烯與丙烯的聚合反應 3
Scheme 1-4 Jordan發表β-二酮胺配位基鋁烷基陽離子錯合
物可以和乙烯做不尋常的可逆環化加成反應 4
Scheme 1-5 烯類聚合催化之反應機制 5
Scheme 1-6 開環聚合反應之反應機構 6
Scheme 1-7 Spassky、Coates、Smith及Nomura所發表開環聚合之金屬錯合物 7
Scheme 1-8 Gibson發表的鋁金屬錯化合物對於乳酸交酯(lactide)的開環聚合反應 7
Scheme 1-9 Darensbourg所發表開環聚合之鋅金屬錯化合物 8
Scheme 1-10 Darensbourg所提出環氧己烷和二氧化碳進行共
聚合反應的反應機構 8
Scheme 1-11 Chisholm發表的鎂與鈣金屬錯化合物對於乳酸交酯(lactide)的開環聚合反應 9
Scheme 1-12 雙芽基酮胺配位基、及雙芽基、三芽基吡咯衍生
物配位基 10
Scheme 2-1-1 含三芽基吡咯衍生物鋯、鉿金屬錯化合物3-8之合成反應方程式 13
Scheme 2-1-2 錯合物3流變現象(on-off)之平衡反應式 14
Scheme 3-1-1 含雙芽基酮胺配位基金屬鎂錯化合物9-11之合成反應方程式 24
Scheme 3-1-2 Gibson所發表三配位的金屬鎂錯化合物 28
Scheme 4-1-1 錯化合物12、13之合成反應方程式 35
Scheme 4-1-2 錯化合物14、15之合成反應方程式 36
Reference
(1) Natta, G.; Pino, P.; Mazzanti, G.; Giannini, U. J. Am. Chem. Soc. 1957, 79, 2975.
(2) (a) Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980, 18, 99. (b) Sinn, H.; Kaminsky, W.; Vollmer, H. J.; Woldt, R. Angew. Chem. Int. Ed. Engl. 1980, 19, 390.
(3) (a) Byrne, C. M.; Allen, S. D.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 11404. (b) Allen, S. D.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 14284. (c) Rieth, L. R.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W.
J. Am. Chem. Soc. 2002, 124, 15239. (d) Cheng, M.; Moore, D. R.;Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.;Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738.
(4) (a) Bai, G.; Singh, S.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.
J. Am. Chem. Soc. 2005, 127, 3449. (b) Zhu, H.; Chai, J.; He, C.; Bai, G.; Roesky, H. W.; Jancik, V.; Schmidt, H.-G.; Noltemeyer, M.
Organometallics 2005, 24, 380. (c) Jancik, V.; Pineda, L. W.; Pinkas, J.; Roesky, H. W.; Neculai, D.; Neculai, A. M.; Regine H.-I. Angew. Chem. Int. Ed. Engl. 2004, 116, 2194.
(5) (a) Avent, A. G.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B. Dalton Trans. 2005, 2, 278. (b) El-Kaderi, H. M.; Xia, A.; Heeg, M. J.; Winter, C. H. Organometallics 2004, 23, 3488.
(6) (a) Radzewich, C. E.; Guzei, I. A.; Jordan, R. F. J. Am. Chem. Soc. 1999, 121, 8673. (b) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384.
(7) (a) Hsu, S.-H.; Chang, J.-C.; Lai, C.-L.; Hu, C.-H.; Lee, H. M.; Lee, G.-H.; Peng, S.-M.; Huang, J.-H. Inorg. Chem. 2004, 43, 6786. (b) Yu, R.-C.; Hung, C.-H.; Huang, J.-H.; Lee, H.-Y.; Chen, J.-T. Inorg. Chem. 2002, 41, 6450. (c) Li, X.-F.; Dai, K.; Ye, W.-P.; Pan, L.; Li, Y.-S. Organometallics 2004, 23, 1223.
(8) (a) Mason, A. F.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 16326. (b) Mason, A. F.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 10798. (c) Getzler, Y. D. Y. L.; Kundnani, V.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 6842.
(9) (a) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem.
Soc. 1998, 120, 4049. (b) Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 849. (c) Tonzetich, Z. J.; Lu, C. C.; Schrock, R. R.; Hock, A. S.; Bonitatebus, P. J., Jr. Organometallics 2004, 23, 4362.
(10) Tian, J.; Hustad, P. D.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 5134.
(11) (a) Ladipo, F. T.; Sarveswaran, V.; Kingston, J. V.; Huyck, R. A.; Bylikin, S. Y.; Carr, S. D.; Watts, R.; Parkin, S. J. Organomet. Chem. 2004, 689, 502. (b) Eisch, J. J.; Gitua, J. N. Organometallics 2003, 22, 4172.
(12) (a) Xiong, Z.; Wang, N.; Dai, M.; Li, A.; Chen, J.; Yang, Z. Org. Lett. 2004, 6, 3337. (b) Hadei, N.; Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G. Org. Lett. 2005, 7, 1991.
(13) (a) Odom, A. L. J. Chem. Soc. Dalton Trans. 2005, 225. (b) Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794. (c) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. (d) Hultzsch, K. C.; Hampel, F.; Wagner, T. Organometallics 2004, 23, 2601.
(14) Yoshito, I.; Hideto, T. Macromol. Rapid. Commun. 2000, 21, 117
(15) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072.
(16) (a) Radano, C. P.; Baker, G. L.; Smith, M. R. J. Am. Chem. Soc. 2000, 122, 1552. (b) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1316.
(17) (a) Zhong, Z.; Dijkstra, P. J.; Feijen, J. Angew. Chem., Int. Ed. Engl. 2002, 41, 4510. (b) Zhong, Z.; Dijkstra, P. J.; Feijen, J. J. Am. Chem. Soc. 2003, 125, 11291.
(18) Nomura, N.; Ishii, R.; Akakura, M.; Aoi, K. J. Am. Chem. Soc. 2002, 124, 5938.
(19) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2004, 126, 2688.
(20) Darensbourg, D. J.; Rainey, P.; Yarbrough, J. Inorg. Chem. 2001, 40, 986.
(21) (a) Chisholm, M. H.; Gallucci, J. C.; Phomphrai, K. Inorg. Chem. 2004, 43, 6717. (b) Chisholm, M. H.; Eilerts, N. W.; Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem. Soc. 2000, 122, 11845.
(22) (a) Takashima, Y.; Nakayama, Y.; Hirao, T.; Yasuda, H.; Harada, A. J. Organomet. Chem. 2004, 689, 612. (b) Takashima, Y.; Nakayama, Y.; Watanabe, K.; Itono, T.; Ueyama, N.; Nakamura, A.; Yasuda, H.; Harada, A. Macromolecules 2002, 35, 7538. (c) Kim,Y.; Jnaneshwara, G. K.; Verkade, J. G. Inorg. Chem. 2003, 42, 1437. (d) Kim, Y.; Verkade, J. G. Organometallics 2002, 21, 2395.
(23) (a) Herz, W.; Dittmer, K. J. Am. Chem. Soc. 1947, 69, 1698. (b)
Kim, H.; Elsenbaumer, R. L. Tetrahedron Lett. 1998, 39, 1087. (c) Drvs, H.; Schmeiber, A.; Hartung, H.; Baumeister, U. Chem. Ber. 1996, 129, 853.
(24) Huang, J.-H.; Kuo, P.-C.; Lee, G.-H.; Peng, S.-M. J. Chin. Chem. Soc. 2000, 47, 1191.
(25) (a) Chisholm, M. H.; Gallucci, J.; Phomphrai, K. Inorg. Chem. 2002, 41, 2785. (b) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229.
(26) Gibson, V. C.; Segal, J. A.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2000, 122, 7120.
(27) Hsieh, K.-C.; Lee, W.-Y.; Lai, C.-L.; Hu, C.-H.; Lee, H. M.; Huang, J.-H.; Peng, S.-M.; Lee, G.-H. J. Organomet. Chem. 2004, 689, 3362.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top