跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 09:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐世賢
研究生(外文):Shih-Hsien Hsu
論文名稱:含酮胺配位基與吡咯配位基之金屬錯化合物(金屬:鈦、銅)的合成、鑑定與反應機制的探討
論文名稱(外文):Synthesis, characterization and mechanism study of titanium imido complexes and copper complexes containing substituted ketiminate and pyrrolyl ligand
指導教授:黃瑞賢黃瑞賢引用關係
指導教授(外文):Jui-Hsien Huang
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:90
中文關鍵詞:鈦亞胺銅金屬
外文關鍵詞:titanium imidoCoppertitanium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
第一章 鈦亞胺(M=NR)錯化合物的合成、鑑定與活性的測試
以tBuN=TiCl2Py3與2倍量Li[OCMeCHCMeN(Ar)] (Ar = C6H3–2,6–iPr2,簡稱:Li(N~O))及1倍量Li[C4H3N(CH2NMe2)–2] (簡稱:DMAMPLi)在室溫下反應合成tBuN=Ti(N~O)2 (1)與tBuN=Ti(DMAMP)ClPy2。化合物1與有機小分子反應主要分為四類,第一類為化合物1與CX2 (X = S, O)在室溫下反應即可產生S=Ti(N~O)2 (2)與O=Ti(N~O)2 (3)。並將化合物1與CS2的反應做密度泛含的理論計算(DFT calculation)得知整個反應式為每莫耳放熱21.8千卡的自發反應。第二類為化合物1與兩端具有不同原子的PhNCO反應,在不同的反應條件下可得到化合物3 (90℃)與PhN=Ti(N~O)2 (4) (室溫)。第三類為化合物1與2,6–二異丙基苯胺及胺甲酸乙酯以1比1的比例混合反應即可得到ArN=Ti(N~O)2 (6)與Ti(N~O)2(NCO)(OEt) (7)。第四類為化合物1本身的熱分解反應,在95℃的甲苯中其可分解成化合物3與H(tBu)NCMeCHCMeN(Ar) (5)。以tBuN=Ti(DMAMP)ClPy2與一倍量的LiOSiPh3、LiOC6H3–2,6–iPr2、CpLi及(DMAMP)Li反應即可合成tBuN=Ti(DMAMP)(OSiPh3)Py (8)、tBuN=Ti(DMAMP)Py (9)、tBuN=Ti(DMAMP)(C5H5) (10)及Ti(DMAMP)3Cl (11)。以化合物1及tBuN=Ti(DMAMP)ClPy2與AlCl3反應則會產生[N~O]2AlCl、[N~O]AlCl2與[tBuN=TiCl2Py2]2 (12)。化合物1–11皆有1H及13C核磁共振光譜鑑定其結構,化合物1、2、3、5、7、8、9和12皆有X-ray晶體結構圖。將化合物7、8和9進行ε-環己內酯的開環聚合進而探討其催化活性與反應性。以tBuN=Ti(DMAMP)ClPy2、化合物8及化合物9進行一系列炔類的環化反應進而探討其催化活性與反應性。
第二章 銅金屬化合物的合成、鑑定與運用
以氯化銅(I)與1倍量的Li[OCMeCHCMeN(Ar)] (Ar = C6H3–2,6–iPr2,簡稱:Li(N~O))及Li[C4H2N(CH2NMe2)2–2,5] (簡稱:BDMAMPLi)在甲苯溶劑中反應即可得到{Cu(N~O)[Li(N~O)]}2 (14)與[Cu(BDMAMP)]2 (16)。化合物14、16與2倍量的PPh3反應即可得到Cu(N~O)(PPh3) (15)與Cu(BDMAMP)(PPh3) (17)。然而,以化合物14、15與氧氣反應最後得到Cu(N~O)2 (18)。化合物14–17皆有1H、13C核磁共振光譜鑑定其結構,其中化合物14、15及18都有X–ray晶體結構圖。

第三章 金屬錯合物(金屬:鈦、鋰與鉬)的合成、鑑定與活性的測定
將Mo(NC6H3–2,6–iPr2)2Cl2(DME)與一倍量Li[C4H3N(CH2NEt2)–2]以1比1的比例混合,在室溫下反應12小時即可脫去鹽類產生Mo(NC6H3–2,6–iPr2)2Cl[C4H3N(CH2NEt2)–2] (19)。將ClTi(OiPr)3與一倍量Li[OCMeCHCMeN(Ar)] (Ar = C6H3–2,6–iPr2,簡稱:Li(N~O))在室溫下反應12小時,則反應會脫去鹽類並經由配位基的重排產生一個具有兩個酮胺配位基的Ti(N~O)2(OiPr)2 (20)。H[OCMeCHCMeN(Ar)]與Li(OC6H3–2,6–iPr2)以1比1的比例在90℃下反應14小時即可產生{Li(μ–OC6H3–2,6–iPr2)[H(N~O)]}2 (21)。化合物19-21皆有1H、13C核磁共振光譜及X-ray晶體結構圖鑑定其結構。以化合物20、21進行ε-環己內酯的開環聚合進而探討其催化活性與反應性。
Abstract
Chapter 1 Synthesis, characterization, and reactivity of titanium imido complexes
Treatment of tBuN=TiCl2Py3 with 2 equiv. lithium ketiminate ─ Li[OCMeCHCMeN(Ar)] (where Ar = C6H3–2,6–iPr2, abbreviation as Li(N~O)), at room temperature gave tBuN=Ti(N~O)2 (1). Reaction of tBuN=TiCl2Py3 with 1 equiv. Li[C4H3N(CH2NMe2)–2] (abbreviation as DMAMPLi) at room temperature gave tBuN=Ti(DMAMP)ClPy2. Reactions of compound 1 with organic molecules were divided into four categories. First, reactions of compound 1 with CX2 (X = S, O) under mild condition produce S=Ti(N~O)2 (2) and O=Ti(N~O)2 (3). A theoretical calculation predicted that the cleavage of the C=S double bond for carbon disulfide with the Ti=N bond of compound 1 was estimated at ca. 21.8 kcalmol-1 exothermic. Second, treatments of compound 1 with PhNCO at 90 ℃ and room temperature produce compound 3 and PhN=Ti(N~O)2 (4), respectivity. Third, reaction of compound 1 with 1 equiv ArNH2 and 1 equiv NH2COOEt afford ArN=Ti(N~O)2 (6) and Ti(N~O)2(NCO)(OEt) (7), respectivity. Fourth, compound 1 decomposed at 90 ℃ in toluene to form compound 3 and H(tBu)NCMeCHCMeN(Ar) (5). Then tBuN=Ti(DMAMP)ClPy2 reacted with various lithium reagent such as LiOSiPh3, LiOC6H3–2,6–iPr2, CpLi and (DMAMP)Li to generate a series of titanium imido complexes – tBuN=Ti(DMAMP)(OSiPh3)Py (8), tBuN=Ti(DMAMP)(OC6H3–2,6–iPr2)(C5H5N) (9), tBuN=Ti(DMAMP)(C5H5) (10) and Ti(DMAMP)3Cl (11). Addition of compound 1 with 1 equiv AlCl3 afford [N~O]2AlCl and [N~O]AlCl2. Addition of tBuN=Ti(DMAMP)ClPy2 with 1 equiv AlCl3 afford [tBuN=TiCl2Py2]2 (12). Compounds 1–11 have been characterized by 1H and 13C NMR spectroscopies. The molecular structures of 1, 2, 3, 5, 7, 8, 9 and 12 were determined by single-crystal X–ray diffraction. Compounds 7, 8, and 9 have been studied as catalyst for the ring-opening polymerization (ROP) of ε-caprolactone. In addition, compounds 8, 9 and tBuN=Ti(DMAMP)ClPy2 has been studied as catalyst for cyclotrimerization of alkyne.

Chapter 2 Synthesis, characterization, and reactivity of copper complexes
Reactions of CuCl(I) with 1 equiv. lithium ketiminate – Li[OCMeCHCMeN(Ar)] (where Ar = C6H3–2,6–iPr2, abbreviation as Li(N~O)) and Li[C4H2N(CH2NMe2)2–2,5] (abbreviation as BDMAMPLi) produce [Cu(N~O)(Li(N~O))]2 (14) and [Cu(BDMAMP)]2 (16), respectivity. Treatments of 14 and 16 with 2 equiv. PPh3 gave Cu(N~O)(PPh3) (15) and Cu(BDMAMP)(PPh3) (17). Compound 18, Cu(N~O)2, can be synthesized by oxidizy compound 14 or 15 with oxygen. Compounds 14–17 have been characterized by 1H and 13C NMR spectroscopies. The molecular structures of 14, 15, and 18 were determined by single–crystal X–ray diffraction.

Chapter 3 Synthesis, characterization, and reactivity of metal complexes (M = Mo, Ti, Li)
Treatment of Mo(NC6H3–2,6–iPr2)2Cl2(DME) with 1 equiv. Li[C4H3N(CH2NMe2)–2] at room temperature in diethyl ether resulted in the elimination of LiCl along with the formation of the corresponded Mo(NC6H3–2,6–iPr2)2Cl[C4H3N(CH2NEt2)–2] (19). Addition of ClTi(OiPr)3 with 1 equiv Li[OCMeCHCMeN(Ar)] (Ar = C6H3–2,6–iPr2, abbreviation as Li(N~O)) at room temperature in toluene afford Ti(N~O)2(OiPr)2 (20) via elimination of LiCl and ligand redistribution. {Li(μ–OC6H3–2,6–iPr2)[H(N~O)]}2 (21) could be synthesized by reacting H[OCMeCHCMeN(Ar)] with Li(OC6H3–2,6–iPr2). Compounds 19–21 have been characterized by 1H and 13C spectroscopies. The molecular structures of 19, 20, and 21 were determined by single-crystal X–ray diffraction. Compounds 20 and 21 have been studied as catalysts for the ring-opening polymerization (ROP) of ε–caprolactone.
章節 頁次
中文摘要
英文摘要
第一章 鈦亞胺(M=NR)錯化合物的合成、鑑定與活性的測試
1-1 緒論 1
1-1-1 鈦金屬錯化合物的崛起與分類 1
1-1-2 鈦金屬錯化合物的運用 3
1-1-3 合成的目標 5
1-2 實驗部分 6
1-2-1 一般實驗 6
1-2-2 物理性質的測量 6
1-2-3 合成tBuN=Ti[OCMeCHCMeN(Ar)]2 (1) 7
1-2-4 合成S=Ti[OCMeCHCMeN(Ar)]2 (2) 8
1-2-5 合成O=Ti[OCMeCHCMeN(Ar)]2 (3) 9
1-2-6 合成PhN=Ti[OCMeCHCMeN(Ar)]2 (4) 10
1-2-7 合成H(tBu)NCMeCHCMeN(Ar) (5) 11
1-2-8 合成ArN=Ti[OCMeCHCMeN(Ar)]2 (6) 11
1-2-9 合成Ti[OCMeCHCMeN(Ar)]2(NCO)(OEt) (7) 12
1-2-10 合成tBuN=Ti[DMAMP](C5H5N)(OSiPh3) (8) 13
1-2-11 合成tBuN=Ti[DMAMP](C5H5N)(OAr) (9) 14
1-2-12 合成tBuN=Ti[DMAMP](C5H5) (10) 15
1-2-13 合成Ti[DMAMP]3Cl (11) 16
1-2-14 合成[tBuN=TiCl2Py2]2 (12) 16
1-2-15 合成tBuN=CH(C6H4–4–CH3) (13) 17
1-3 討論與結果 18
1-3-1 含酮胺配位基之鈦亞胺錯化合物的合成與鑑定 18
1-3-2 化合物1、2、3、5、7的晶體結構的探討 25
1-3-3 化合物1與CS2的理論計算(DFT calculation) 32
1-3-4 吡咯配位基鈦金屬錯化合物的合成與鑑定 33
1-3-5 化合物8、9、12的晶體結構的探討 37
1-3-6 鈦金屬錯化合物之ε–環己內酯的開環聚合 40
1-3-7 鈦金屬錯化合物與炔類的環化反應 42
1-4 結論 43
參考文獻 44
第二章 銅金屬化合物的合成、鑑定與運用
2-1 緒論 52
2-1-1 銅金屬化學在生物體中的重要性與分類 52
2-1-2 模擬分子的種類 53
2-1-3 合成目標 55
2-2 實驗部分 56
2-2-1 一般實驗、物理性質的測量 56
2-2-2 合成{Cu(N~O)[Li(N~O)]}2 (14) 56
2-2-3 合成Cu[OCMeCHCMeN(Ar)](PPh3) (15) 57
2-2-4 合成[Cu(BDMAMP)]2 (16) 58
2-2-5 合成Cu[BDMAMP](PPh3) (17) 58
2-2-6 合成Cu[OCMeCHCMeN(Ar)]2 (18) 59
2-3 討論與結果 60
2-3-1 銅(I)金屬錯化合物的合成與鑑定 60
2-3-2 銅(I)金屬錯化合物與氧氣的反應 62
2-3-3 化合物14、15、18的晶體結構的探討 64
2-4 結論 68
參考文獻 68
第三章 金屬錯合物(金屬:鈦、鋰與鉬)的合成、鑑定與活性的測定
3-1 實驗部分 70
3-1-1 一般實驗、物理性質的測量 70
3-1-2 合成(ArN=)2MoCl[C4H3N(CH2NEt2)-2] (19) 70
3-1-3 合成Ti[OCMeCHCMeN(Ar)]2(OiPr)2 (20) 71
3-1-4 合成{Li(μ–OAr)[HOCMeCHCMeN(Ar)]}2 (21) 72
3-2 討論與結果 73
3-2-1 金屬錯化合物的合成與鑑定 73
3-2-2 化合物19、20、21的晶體結構的探討 77
3-2-3 化合物20與21對ε-環己內酯的開環聚合反應 80
3-3 結論 82
參考文獻 82
附錄 X-ray Data
圖次
圖1-1 化合物1的晶體結構圖 26
圖1-2 化合物2的晶體結構圖 26
圖1-3 化合物3的晶體結構圖 27
圖1-4 化合物5的晶體結構圖 27
圖1-5 化合物7的晶體結構圖 28
圖1-6 化合物8的晶體結構圖 38
圖1-7 化合物9的晶體結構圖 38
圖1-8 化合物12的晶體結構圖 39
圖2-1 化合物14的晶體結構圖 64
圖2-2 化合物15的晶體結構圖 65
圖2-3 化合物18的晶體結構圖 65
圖3-1 化合物20同核去偶合核磁共振光譜 75
圖3-2 化合物20 1H NMR (200 MHz)變溫核磁共振光譜 76
圖3-3 化合物19的晶體結構圖 77
圖3-4 化合物20的晶體結構圖 78
圖3-5 化合物21的晶體結構圖 78
表次
表1-1 化合物1、2、3、5、7的鍵長(Å)與鍵角(º) 28
表1-2 Ti=S鍵長之比較 31
表1-3 化合物2之理論與實驗的鍵長與鍵角比較表 32
表1-4 化合物8、9、12的鍵長(Å)與鍵角(º) 39
表1-5 化合物7、8、9與ε–環己內酯的開環聚合 41
表1-6 炔類的環化反應(cyclotrimerization) 43
表2-1 化合物14、15、18的鍵長(Å)與鍵角(º) 66
表3-1 化合物19、20、21的鍵長(Å)與鍵角(º) 79
表3-2 化合物20、21與ε–環己內酯的開環聚合 81
式次
Scheme 1-1 Cp系統催化劑– Metallocene、CGC 1
Scheme 1-2 非Cp系統催化劑– β–二酮胺、酮胺和希夫鹼 2
Scheme 1-3 等電子效應 3
Scheme 1-4 聚己內酯開環聚合反應 4
Scheme 1-5 鈦亞胺雙鍵與炔類的環化反應 5
Scheme 1-6 酮胺配位基與單芽基吡咯配位基 5
Scheme 1-7 化合物1合成步驟 18
Scheme 1-8 化合物1與C=X (X = O, S)反應機制 19
Scheme 1-9 化合物1與PhNCO反應機制 20
Scheme 1-10 化合物1與RNH2反應 21
Scheme 1-11 化合物1與2,6–二異丙基苯胺反應機制 22
Scheme 1-12 化合物1與胺甲酸乙酯反應機制 23
Scheme 1-13 化合物1熱分解反應機制 24
Scheme 1-14 化合物1與路易士酸(AlCl3)反應 25
Scheme 1-15 化合物1、2、3金屬與平面的距離 30
Scheme 1-16 tBuN=Ti(DMAMP)Cl(C5H5N)2合成步驟 33
Scheme 1-17 tBuN=Ti(DMAMP)Cl(C5H5N)2反應全圖 35
Scheme 1-18 tBuN=Ti(DMAMP)Cl(C5H5N)2與醛類、路易士酸(AlCl3)反應 36
Scheme 1-19 化合物13反應機制 37
Scheme 1-20 炔類的環化反應(cyclotrimerization) 42
Scheme 2-1 生物體內常見銅/氧反應 52
Scheme 2-2 銅/氧模擬分子的分類 54
Scheme 2-3 含β–二酮胺配位基之銅/氧模擬分子 55
Scheme 2-4 酮胺配位基與雙芽基吡咯配位基 55
Scheme 2-5 還原態銅金屬化合物合成步驟 60
Scheme 2-6 化合物14解析圖 61
Scheme 2-7 化合物14、15氧化反應 63
Scheme 2-8 化合物16氧化反應 63
Scheme 3-1 化合物19合成步驟 73
Scheme 3-2 化合物20反應機制 74
Scheme 3-3 化合物21合成步驟 77
第一章參考文獻
(1) Natta, G.; Pino, P.; Mazzanti, G.; Giannini, U. J. Am. Chem. Soc. 1957, 79, 2975.
(2) (a) Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980, 18, 99. (b) Sinn, H.; Kaminsky, W.; Vollmer, H. J.; Woldt, R. Angew. Chem., Int. Ed. Engl. 1980, 19, 390.
(3) (a) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998, 120, 11018. (b) Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.;Coates, G. W. J. Am. Chem. Soc. 1999, 121, 11583. (c) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Lobkovsky, E. B.;Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229. (d) Cheng, M.; Moore, D. R.;Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.;Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8739.
(4) (a) Qian, B.; Ward, D. L.; Smith, M. R., III. Organometallics 1998, 17, 3070. (b) Qian, B.; Scanlon, W. J., IV; Smith, M. R., III. Organometallics 1999, 18, 1693. (c) Kakaliou, L.; Scanlon, W. J., IV; Qian, B.; Baek, S. W.; Smith, M. R., III. Inorg. Chem. 1999, 38, 5964. (d) Qian, B.; Baek, S. W.; Smith, M. R., III. Polyhedron 1999, 18, 2405.
(5) (a) Prust, J.; Stasch, a.; Zheng, W.; Roesky, H. W.; Alexopoulos, E,; Usón, I.; Böhler, O.; Schuchardt, T. Organometallics 2001, 20, 3825. (b) Cui, C.; Roesky, H. W.; Hao, H.; Schmidt, H. –G.; Noltemeyer, M. Angew. Chem., Int. Ed.Engl. 2000, 39, 1815. (c) Cui, C.; Roesky, H. W.; Hao, H.; Schmidt, H. G.; Noltemeyer, M. Angew. Chem., Int. Ed. Engl. 2000, 39, 4531. (d) Cui, C.; Roesky, H. W.; Schmidt, H. –G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Angew. Chem., Int. Ed. Engl. 2000, 39, 4274. (e) Stender, M.; Eichler, B. E.; Hardman, N. J.; Power, P. P.; Prust, J.; Noltemeyer, M.; Roesky, H. W. Inorg. Chem. 2001, 40, 2794.
(6) (a) Radzewich, C. E.; Guzei, I. A.; Jordan, R. F. J. Am. Chem. Soc. 1999, 121, 8673. (b) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384.
(7) (a) Hitchcock, P. B.; Lapprt, M. F.; Layh, M. Chem. Commun. 1998, 201. (b) Hitchcock, P. B.; Lappert, M. F.; Liu, D. –S. J. Chem. Soc., Chem. Commun. 1994, 1699. (c) Hitchcock, P. B.; Lappert, M. F.; Liu, D. –S. J. Chem. Soc. Chem. Commun. 1994, 2637.
(8) (a) Budzelaar, P. H. M.; de Gelder, R.; Gal, A. W. Organometallics 1998, 19, 4121. (b) Budzelaar, P. H. M.; van Oort, A. B.; Orpen, A. G. Eur. J. Inorg. Chem. 1998, 1485. (c) Budzelaar, P. H. M.; Moonen, N. N. P.; de Gelder, R.; Smits, J. M. M.; Gal, A. W. Eur. J. Inorg. Chem. 2000, 753.
(9) (a) Vollmerhaus, R.; Rahim, M.; Tomaszewski, R.; Xin, S.; Taylor, N. J.; Collins, S. Organometallics 2000, 19, 2161. (b) Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics 1998, 17, 1315.
(10) (a) Gibson, V. C.; Segal, J. A.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2000, 122, 7120. (b) Gibson, V. C.; Maddox, P. J.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Soc., Chem. Commun. 1998, 1651.
(11) (a) Parks, J. E.; Holm, R. H. Inorg. Chem. 1968, 7, 1408. (b) Clegg, W.; Cope, E. K.; Edwards, A. J.; Mair, F. S. Inorg. Chem. 1998, 37, 2317. (c) Hardman, N. J.; Power, P. P. Inorg. Chem. 2001, 40, 2474. (t) Lee, L. W. M.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W.; Parvez, M. Organometallics 1998, 18, 2947. (d) Bailey, P. J.; Dick, C. M. E.; Fabore, S.; Parsons, S. J. Chem. Soc., Dalton Trans. 2000, 1655. (e) Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.; Calabrese, J. C.; Arthur, S. O. Organometallics 1997, 16, 1514.
(12) (a) Tung, Y. L.; Tseng, W. C.; Lee, C. Y.; Hsu, P. F.; Chi, Y.; Peng, S, M.; Lee, G. H. Organometallics 1999, 18, 864. (b) Shin, H. K.; Hampden-Smith, M. J.; Kodas, T. T.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1992, 217. (c) Iido, H.; Yuasa, Y.; Kibayashi, C.; Iitaka, Y. J. Chem. Soc., Dalton Trans. 1981, 2212. (d) Jones, D.; Roberts, A.; Cavell, K.; Keim, W.; Englert, U.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1998, 255.
(13) Strauch, J.; Warren, T. H.; Erker, G.; Fröhlich, R.; Saarenketo, P. Inorg. Chim. Acta. 2000, 300, 810. (b) Matilainen, L.; Klinga, M.; Leskelä, M. J. Chem. Soc., Dalton Trans. 1996, 219. (c) García-Raso, A.; Fiol, J. J.; López-Zafra, A.; Mara, I.; Eapinosa, E.; Molins, E. Polyhedron. 2000, 19, 673. (d) Darensbourg, D. J.; Rainey, P.; Yarbrough, J. Inorg. Chem. 2001, 40, 986. (e) Chisholm, M. H.; Gallucci, J. C.; Zhen, H,; Huffman, J. C. Inorg. Chem. 2001, 40, 5051. (f) Dubé, T.; Gambarotta, S.; Yap, G. Organometallics 1998, 17, 3967.
(14) Jin, X.; Novak, B. M. Macromolecules 2000, 33, 6205. (b) Kim, W. K.; Fevola, M. J.; Liable-Sands, L. M.; Rheingold, A.L.; Theopold, K. H. Organometallics 1998, 17, 4541. (c) Vollmerhaus, R.; Rahim, M.; Tomaszewski, R.; Xin, S. X.; Taylor, N. J.; Collins, S. Organometallics 2000, 19, 2161. (d) Jones, D.; Cavell, K.; Keim, W. J. Mol. Catal. A: Chem. 1999, 138, 37. (e) Matsukawa, N.; Matsui, S.; Mitani, M.; Saito, J.; Tsuru, K.;Kashiwa, N.; Fujita, T. J. Mol. Catal. A: Chem. 2001, 169, 99.
(15) (a) Male, N. A. H.; Skinner, M. E. G.; Bylikin, S. Y.; Wilson, P. J.; Mountford, P.; Schro1der, M. Inorg. Chem. 2000, 39, 5483. (b) Diefenbach, A.; Bickelhaupt, F. M. Z. Anorg. Allg. Chem. 1999, 625, 892.
(16) (a) Bolton, P. D; Mountford P. Adv. Synth. Catal. 2005, 347, 355. (b) Gade, L. H; Mountford P. Coord. Chem. Rev. 2001, 216–217, 65.
(17) (a) Li, Y; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794. (b) Shi, Y; Hall, C; Ciszewski, J. T; Cao C; Odom, A. L. Chem. Commun. 2003, 586.
(18) (a) Takashima, Y.; Nakayama, Y.; Hirao, T.; Yasuda, H.; Harada, A.; J. Organomet. Chem. 2004, 689, 612. (b) Takashima, Y.; Nakayama, Y.; Watanabe, K.; Itono, T.; Ueyama, N.; Nakamura, A.; Yasuda, H.; Harada, A. Macromolecules 2002, 35, 7538.
(19) (a) Kim,Y.; Jnaneshwara, G. K.; Verkade, J. G. Inorg. Chem. 2003, 42, 1437. (b) Kim, Y.; Verkade, J. G. Organometallics 2002, 21, 2395. (c) Chisholm, M.H.; Lin, C. C.; Gallucci, J. C.; Tsan Ko, B. J. Chem. Soc., Dalton Trans. 2003, 406.
(20) (a) Ladipo, F. T.; Sarveswaran, V.; Kingston, J. V.; Huyck, R. A.; Bylikin, S. Y.; Carr, S. D.; Watts, R.; Parkin, S. J. Organomet. Chem. 2004, 689, 502. (b) Eisch, J. J.; Gitua, J. N. Organometallics 2003, 22, 4172. (c) Johnson, E. S.; Balaich, G. J.; Rothwell, I. P. J. Am. Chem. Soc. 1997, 119, 7685.
(21) (a) Ackermann, L. Organometallics 2003, 22, 4367. (b) Cao, C.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2003, 125, 2880. (c) Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956.
(22) Blake, A. J.; Collier, P. E.; Dunn, S. C.; Li, W. S.; Mountford, P.; Shishkin, O. V. J. Chem. Soc., Dalton Trans., 1997, 1549.
(23) (a) Herz, W.; Dittmer, K. J. Am. Chem. Soc. 1947, 69, 1698. (b) Huang, J. -H.; Chen, H. -J.; Chang, J. -C.; Zhou, C. -C.; Lee, G. -H.; Peng, S. -M. Organometallics 2001, 20, 2647. (c) Yu, R. -C.; Hung, C. -H.; Huang, J. -H.; Lee, H. -Y.; Chen, J. -T. Inorg. Chem. 2002, 41, 6450. (d) Huang, J. -H.; Chi, L. -S.; Hung, F. -M.; Kuo, P. -C.; Zhou, C. -C.; Lee, G. -H.; Peng, S. -M. J. Chin. Chem. Soc. 2000, 47, 895.
(24) (a) Boyd, C. L.; Clot, E.; Guiducci, A. E.; Mountford, P. Organometallics 2005, 24, 2347. (b) Ward, B. D.; Aline, M. –F.; Mountford, P.; Gade, L. H. J. Chem. Soc., Chem. Commun. 2004, 704. (c) Hanna, T. E.; Keresztes, I.; Lobkovsky, E.; Bernskoetter, W. H.; Chirik, J. Organometallics 2004, 23, 3448.
(25) (a) Boyd, C. L.; Guiducci, A. E.; Dubberley, S. R.; Tyrrell, B. R.; Mountford, P. J. Chem. Soc., Dalton Trans. 2002, 4175. (b) Blake, A. J.; Collier, P. E.; Dunn, S. C.; Li, W. S.; Mountford, P.; Shishkin, O. V. J. Chem. Soc., Dalton Trans. 1997, 1549.
(26) (a) Anderson, S. J.; Brown, D. S.; Finney, K. J. J. Chem. Soc., Dalton Trans. 1979, 152. (b) Blake, R. E., Jr.; Antonelli, D. M.; Henling, L. M.; Schaefer, W. P.; Hardcastle, K. I.; Bercaw, J. E. Organometallics 1998, 17, 718. (c) Jeske, P.; Wieghardt, K.; Nuber; B. Inorg. Chem. 1994, 33, 47. (d) Kaplan, A. W.; Polse, J. L.; Ball, G. E.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 11649. (e) Secondo, P. M.; Land, J. M.; Baughman, R. G.; Collier, H. L. Inorg. Chim. Acta 2000, 309, 13.
(27) Basuli, F.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. J. Am. Chem. Soc. 2003, 125, 10170.
(28) (a) Sweeney, Z. K.; Polse, J. L.; Bergman, R. G.; Andersen, R. A. Organometallics 1999, 18, 5502. (b) Lundmark, P. J.; Kubas, G. J.; Scott, B. L. Organometallics 1996, 15, 3631. (c) Hagadorn, J. R.; Arnold, J. Inorg. Chem. 1997, 36, 2928. (d) Komuro, T.; Matsuo, T.; Kawaguchi, H.; Tatsumi, K. Chem. Comm. 2002, 988. (e) Müller, U.; Krug, V. Angew. Chem. Int., Ed. Engl. 1988, 27, 293.
(29) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Guassian, Revision A.12 ed.; Gaussian, Inc.: Pittsburgh, PA, 2001.
(31) (a) Singh, M. S.; Narayan, Prem. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. 2001, 31(1), 149. (b) Ives, C.; Fillis, E. L.; Hagadorn, J. R. J. Chem. Soc., Dalton Trans., 2003, 527.
(32) Kloc, K.; Kubicz, E.; Mlochowski, J. Syper, L. Syn. 1987, 1084.

第二章參考文獻
(1) (a) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013. (b) Klinman, J. P. Chem. Rev. 1996, 96, 2541. (c) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563. (d) Fontecave, M.; Pierre, J.-L. Coord. Chem. Rev. 1998, 170, 125.
(2) (a) Prigge, S. T.; Mains, R. E.; Eipper, B. A.; Amzel, L. M. Cell. Mol. Life Sci. 2000, 57, 1236. (b) Prigge, S. T.; Kolhekar, A. S.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Nat. Struct. Biol. 1999, 6, 976.
(3) Hart, P. J.; Balbirnie, M. M.; Ogihara, N. L.; Nersissian, A. M.; Weiss, M. S.; Valentine, J. S.; Eisenberg, D. Biochemistry 1999, 38, 2167.
(4) (a) Prigge, S. T.; Kolhekar, A. S.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science 1997, 278, 1300. (b) Dooley, D. M.; Scott, R. A.; Knowles, P. F.; Colangelo, C. M.; Mcguirl, M. A.; Brown, D. E. J. Am. Chem. Soc. 1998, 120, 2599. (c) Cuff, M. E.; Miller, K. I.; Vanholde, K. E.; Hendrickson, W. A. J. Mol. Biol. 1998, 278, 855. (d) Volbeda, A.; Hol, W. G. J. J. Mol. Biol. 1989, 209, 249. (e) Yoshikawa, S.; Shinzawaitoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima, T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T. Science 1998, 280, 1723. (f) Messerschmidt, A. Struct. Bonding (Berlin) 1998, 90, 37. (g) Roberts, S. A.; Weichsel, A.; Grass, G.; Thakali, K.; Hazzard, J. T.; Tollin, G.; Rensing, C.; Montfort, W. R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 2766.
(5) (a) Hazes, B.; Magnus, K. A.; Bonaventura, V.; Dauter, Z.; Kalk, K. H.; Hol, W. G. J. Protein Sci. 1993, 2, 597. (b) Magnus, K. A.; Hoa, T. –T.; Carpenter, J. E. Chem. Rev. 1994, 94, 727. (c) Shin, W.; Sundaram, U. M.; Cole, J. L.; Zhang, H. H.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 1996, 118, 3202.
(6) Aboelella, N. W.; Lewis, E.A.; Reynolds, A. M.; Brennessel, W. W.; Cramer, C. J.; Tolman, W. B. J. AM. CHEM. SOC. 2002, 124, 10660.
(7) (a) Herz, W.; Dittmer, K. J. Am. Chem. Soc. 1947, 69, 1698. (b) Huang, J. -H.; Chen, H. -J.; Chang, J. -C.; Zhou, C.-C.; Lee, G. -H.; Peng, S. -M. Organometallics 2001, 20, 2647. (c) Yu, R. -C.; Hung, C. -H.; Huang, J. -H.; Lee, H. -Y.; Chen, J. -T. Inorg. Chem. 2002, 41, 6450.

第三章參考文獻:
(1) Fox, H. H.; Yap, K. B.; Robbins, J.; Cai, S.; Schrock, R. R. Inorg. Chem. 1992, 31, 2281.
(2) (a) Takashima, Y.; Nakayama, Y.; Hirao, T.; Yasuda, H.; Harada, A.; J. Organomet. Chem. 2004, 689, 612. (b) Takashima, Y.; Nakayama, Y.; Watanabe, K.; Itono, T.; Ueyama, N.; Nakamura, A.; Yasuda, H.; Harada, A. Macromolecules 2002, 35, 7538.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top