跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 13:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴嘉斌
論文名稱:萃取社會化網路以進行目標廣告之研究
論文名稱(外文):Mining Social Network for Targeted Advertising
指導教授:楊婉秀楊婉秀引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊管理學系所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:58
中文關鍵詞:資料探勘社會化網路推薦技術目標廣告
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出一套運用社會化網路概念於產品目標廣告的資料探勘架構。架構中,「個人化社群分析演算法」從顧客互動資料所建構的社會化網路裡,找出具有高內聚力特性的子群體,我們根據子群體成員過去的產品交易記錄,利用「子群體特性分析法」計算出各個子群體對各類產品喜好的機率分配表,藉由這樣的資訊,實作出一個目標廣告系統。最後,我們利用模擬資料進行「個人化社群分析演算法」的效率評估,以及使用彰師大學生的交友名單與圖書館借閱記錄進行目標行銷系統的有效性評估。實驗結果顯示,本論文提出的方法在產品目標行銷上有不錯的廣告效益。
In this paper, we propose a data mining framework that utilizes the concept of social network for the targeted advertising of products. This approach discovers the cohesive subgroups from customer’s social network which is derived from customer’s interaction data. Based on the set of cohesive subgroups, we infer the probabilities of customer’s liking a product category from transaction records. Utilizing such information, we construct a targeted advertising system. We evaluate the proposed approach by applying both synthetic data and real-world library circulation data. The experimental results show that our approach yields better quality of advertisement.
誌謝辭……………………………………………………………………...I
摘要…………………………………………………………………..…....II
ABSTRACT……………………………..……………………………….III
目錄……………………………………………………………………….IV
圖次……………………………………………………………………….VI
表次…………………………………………………………………….VIII

第一章 緒論………………………………………………………………1
第二章 文獻探討…………………………………………………………5
第一節 目標廣告……………………………………………………5
第二節 推薦技術……………………………………………………6
第三節 社會化網路…………………………………………………8
第四節 資料探勘…………………………………………………..15
第三章 社會化網路分析方法…………………………………………..19
第一節 個人化社群分析演算法…………………………………..22
第二節 子群體特性分析法………………………………………..38
第三節 喜好度目標行銷策略……………………………………..39
第四章 實驗評估………………………………………………………..42
第一節 系統發展實作……………………………………………..42
第二節 個人化社群分析演算法效率評估………………………..42
第三節 系統有效性評估…………………………………………..45
第五章 結論……………………………………………………………..51
第一節 結論………………………………………………………..51
第二節 研究限制…………………………………………………..52
第三節 未來研究方向……………………………………………...52
參考文獻………………………………………………………………….54
附錄一:中國圖書分類法……………………………………………….59


圖次
圖1-1 論文架構圖………………………………………………………...4
圖2-1 冪律分配………………………………………………………….10
圖2-2 有向圖…………………………………………………………….11
圖2-3 無向圖…………………………………………………………….12
圖2-4 重邊圖…………………………………………………………….12
圖2-5 加值圖…………………………………………………………….13
圖2-6 叢聚圖……………………………………………………………..13
圖2-7 強度連通元件圖………………………………………………….14
圖2-8 完整二分圖……………………………………………………….15
圖2-9 圖形化資料勘…………………………………………………….18
圖3-1 社會化網路圖…………………………………………………….20
圖3-2 社會化網路圖的資料結構………………………………………..21
圖3-3 產品分類架構圖…………………………………………………..21
圖3-4 內聚力函數-向下收斂特性之證明……………………………..23
圖3-5 候選子群體的產生………………………………………………..24
圖3-6 社會化網路圖與相鄰矩陣………………………………………..28
圖3-7 實例一之個人化社群分析演算法執行過程……………………..29
圖3-8 雜湊樹……………………………………………………………..31
圖3-9 時間t之社會化網路分析過程…………………………………...33
圖3-10 時間t+1的社會化網路………………………………………….33
圖3-11 時間t+1之社會網路分析過程………………………………….34
圖3-12實例二之社會化網路圖與相鄰矩陣…………………………….36
圖3-13 增益式個人化社群分析演算法執行過程………………………37
圖4-1 實驗一之效率評估(一) …………………………………..………44
圖4-2 實驗一之效率評估(二) …………………………………………44
圖4-3 實驗二之效率評估(一) …………………………………………44
圖4-4 實驗二之效率評估(二) …………………………………………44
圖4-5 系統在不同門檻值下所花費時間………………………………46
圖4-6 不同門檻值下命中率之比較……………………………….…...48
圖4-7 各推薦方法之命中率比較………………………..……………..49
[1] Abello, J., Pardalos, P. M., and Resende, M. G.(1998), On Maximum Clique Problems in Very Large Graphs, Research Technical Report, AT&T Labs, TR 98.32.1.
[2] Adamic, L. A., and Huberman, B. A.(2000), Power-Law Distribution of the World Wide Web, Science, 287(5461), pp.2115a.
[3] Adomavicius, G.., and Tuzhilin, T.(2003), Recommendation Technologies: Survey of Current Methods and Possible Extensions, Working Paper, University of Minnesota.
[4] Agrawal, R. and Srikant, R.(1994), Fast algorithms for mining association rules, Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, pp.478-499.
[5] Albert, R., Jeong, H., and Barabasi, A. L.(1999), Diameter of the World-Wide Web, Nature, 401, pp.130-131.
[6] Amaral, L. A. N., Scala, A., Barthelemy, M., and Stanley, H. E.(2000), Classes of Small-World Networks, Proceedings of the National Academy of Sciences, 97, pp.11149-11152.
[7] Balabanovic, M., and Shoham, Y.(1997), Fab: Content-based, Collaborative Recommendation, Communications of the ACM, 40(3), pp.66-72.
[8] Barabasi, A. L., and Albert, R.(1999), Emergence of Scaling in Random Networks, Science, 286, pp.509-512.
[9] Billsus, D., and Pazzani, M.(1998), Learning Collaborative Information Filters, Proceedings of the International Conference on Machine Learning, Morgan Kaufmann Press, pp. 46-53.
[10] Chang, C. L., Chen, D. Y. and Chuang, T. R.(2002), Browsing Newsgroups with A Social Network Analyzer, Proceedings of the 6th International Conference on Information Visualisation, London, UK, pp. 750-755.
[11] Chen, M. S., Han, J. and Yu, P. S.(1996), Data Mining: An Overview from a Database Perspective, IEEE Transaction on Knowledge and Data Engineering, 8(6), pp.866-883.
[12] Claypool, M., Gokhale, A., Miranda, T., Murnikov, P. Netes, D., and Sartin, M.(1999), Combining Content-Based and Collaborative Filters in An Online Newspaper, Proceedings of the ACM SIGIR’99. Workshop on Recommender Systems: Algorithms and Evaluation, University of California, Berkeley.

[13] Cook, D. J., and Holder, L. B.(2000), Graph-Based Data Mining, IEEE Intelligent System, 15(2), pp.32-41.
[14] Cook, D. J., Holder, L. B., and Djoko, S.(1996), Scalable Discovery of Informative Structural Concepts Using Domain Knowledge, IEEE Expert, 11(5), pp59-68.
[15] Cormen, T., Leiserson, C., and Rivest, R.(1990), Introduction to algorithms, Cambridge, The MIT Press.
[16] Djoko, S., Cook, D. J., and Holder, L. B.(1997), An Empirical Study of Domain Knowledge and Its Benefits to Substructure Discovery, IEEE Transactions on Knowledge and Data Engineering, 9(4), pp.575-586.
[17] Garton, L., Haythornthwaite, C., and Wellman, B. (1997), Studying Online Social Networks, Journal of Computer Mediated Communication, 3(1), pp.75-105.
[18] Guare, J., Six Degrees of Separation: A Play, New York, Weekly.
[19] Hayes, L.(1994), Using computers to divine who might buy a gas grill, The Wall Street Journal, August 16, pp. B1-B4.
[20] Hill, W., Stead, L., Rosenstein, M., and Furnas, G.. (1995), Recommending and Evaluating Choices in a Virtual Community of Use, Proceedings of ACM SIGCHI’95 Conference on Human Factors in Computing Systems, Denver, United States, pp.194-201.
[21] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., and Riedl, J.(1997), GroupLens: Applying Collaborative Filtering to Usenet News, Communications of the ACM, 40(3), pp.77-87.
[22]Kramer, J., Noronha, S., and Vergo, J.(2000), A User-Centered Design Approach to Personalization, Communication of the ACM, 43(3), pp.44-48.
[23] Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A.(1999), Trawling the Web for Emerging Cyber-Communities, Computer Networks, 31(11-16), pp.1481-1493.
[24]Kotler, P.(1991), Marketing Management-Analysis Planning, Implementation, and Control, 7th ed, Englewood Cliffs:Prentice-Hall Inc.
[25] Lang, L.(1995), NewsWeeder: Learning to Filter Netnews, Proceedings of 12th International Conference on Machine Learining, California, United States, pp. 331-339.
[26] Lin, F. R., and Chen, C. H.(2004), Developing and Evaluating the Social Network Analysis System for Virtual Teams in Cyber Communities, Proceedings of the 37th Aunual Hawaii International Conference on System Sciences, Hawaii, United States, January 6-9.
[27]Langheinrich, M., Nakamura, A., Abe, N., Kamba, T., and Koseki, Y.(1999), Unintrusive customization techniques for Web advertising, Computer Networks, 31, pp.1259-1272.
[28] Melville, P., Mooney, R. J., and Nagarajan, R.(2002), Content-Boosted Collaborative Filtering for Improved Recommendations, Proceedings of the Eighteenth National Conference on Artificial Intelligence, Edmonton, Canada, pp.187-192.
[29] Milgram, S.(1967), The Small World Problem, Psychology Today, 22, pp.60-67.
[30] Mitra, S. K. Pal, P. Mitra, “Data Mining in Soft Computing Framework: A Survey.” IEEE Transaction on Neural Networks, 13(1), pp.3-14.
[31] Mooney, R. J.(2000), Content-Based Book Recommending Using Learning for Text Categorization, Proceedings of the Fifth ACM Conference on Digital Libraries, San Antonio, United States, pp.195-204.
[32]Manber, U., Patel, A., and Robison, J.(2000), Experience with Personalization on YAHOO!, Communications of the ACM, 43(8), pp.35-39.
[33] Newman, M. E. J.(2001), The Structure of Scientific Collaboration Networks, Proceedings of the National Academy of Sciences, USA 98, pp.409-415.
[34] Newman, M., Watts, D. and Strogatz, S.(2001), Random Graph Models of Social Networks, Proceedings of the National Academy of Sciences of the United States of America, 99(1), pp.2566-2572.
[35] Pazzani, M., and Billsus, D.(1997), Learning and Revising User Profiles: The Identification of Interesting Web Sites, Machine Learning, 27, pp313-331.
[36] Preece, J.(2002), Online Communities: Designing Usability and supporting sociability, UK, John Wiley & Sons.
[37] Resnick, P., Iakovou, N., Sushak, M., Bergstrom, P. and Riedl, J.(1994), GroupLens: An Open Architecture for Collaborative Filtering of Netnews, Proceedings of ACM CSCW’94 Conference on Computer-Supported Cooperative Work, New York, United States, pp.175-186.
[38] Salton, G.(1989), Automatic Text Processing, Boston, United States.
[39] Savasere, A., Omiecinski, E. and Navathe, S.(1995), An Efficient Algorithm for Mining Association Rules in Large Database, Proceedings of the 21th International Conference on Very Large Database, pp.432-444.
[40] Schwartz, M. and Wood, D.(1993), Discovering Shared Interests Using Graph Analysis, Communication of the ACM, 36(8), pp.78-89.
[41] Shardanand, U. and Maes, P.(1995), Social Information Filtering: Algorithms for Automating “Word of Mouth”, Proceedings of the Conference on Human Factors in Computing Systems, New York, United States, pp.210-217.
[42] Soo, J., Chen, M. S. and Yu, P. S.(1997), Using a Hash-Based Method with Transaction Trimming and Database Scan Reduction for Mining Association Rules, IEEE Transaction on Knowledge and Data Engineering, 9(5), pp.813-825.
[43]Schafer, J. B., Konstan, J. A., and Riedl, J.(2001), E-Commerce Recommendation Applications, Data Mining and Knowledge Discovery, 5(1), pp.115-153.
[44] Ungar, L. H., and Foster, D. P.(1998), Clustering Methods for Collaborative Filtering, In Proceedings of the Workshop. on Recommendation System. Papers from 1998 Workshop. Technical Report WS-98-08, AAAI Press.
[45] Wasserman, S. and Faust, K.(1994), Social Network Analysis: Methods and Applications, New York, Cambridge University Press, pp.69-166.
[46] Watts, D. J. and Strogatz, S. H.(1998), Collective Dynamics of ‘Small World’ Networks, NATURE, 393, pp.440-442.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top