|
Reference(I)
[1.] J. P. Aubin and A. Cellina, Differential inclusions, Springer Verlag , Berlin, Heidelberg, Germany, 1994.
[2.] D. Aussel and N. Hadjisavvas, On Quasimonotone Variational Inequalities, J. Optim. Theory Appl., 121(2004), 445-450.
[3.] Q. H. Ansari, and J. C. Yao, Generalized vector equilibrium problem, J. Stat. Manag. Systems, 5(1-3), 1-17.
[4.] Q. H. Ansari, S. Schaible, J. C. Yao, Generalized vector equilibrium problems under generalized pseudomonotonicity with applications, Journal of Nonlinear and Convex Analysis, 3(2002), 331-344.
[5.] Q. H. Ansari, Z. Khan, and A. H. Siddiqi, Weighted variational inequalities, J. Global Optimization, (to appear).
[6.] M. Bianch, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl., 92(1997), 527-542.
[7.] M. Bianchi and R. Pini, Coercivity Conditions for Equilibrium Problems, J. Optim. Theory Appl., 124(2005), 79-92.
[8.] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Students, 63(1994), 123-145.
[9.] P. Deguire, K. K. Tan and G. X. Z. Yuan, the study of maximal elements , fixed point for Ls-majorized mappings and the quasi-variational inequalities in product spaces, Nonlinear Anal., 37(1999), 933-951.
[10.] J. Y. Fu and A. H. Wan, Generalized vector equilibria problems with set-valued mappings, Math. Meth. Oper. Res., 56(2002), 259-268.
[11.] F. Giannessi, (Editor), Variational inequalities and vector equilibria, Mathematical Theories, Kluwer Academic Publisher, Dodrecht Holand, (2000).
[12.] A. Guerraggio, N. X. Tan, On general vector quasi-optimization problems, Math. Meth. Oper. Res., 55(2002), 347-358.
[13.] N. Hadjisavvas, Continuity and maximality properties of pseudomonotone operator, Journal of Convex Analysis, 10(2003), 465-475.
[14.] N. Hadjisavvas and S. Schaible, From scalar to vector equilibrium problems in the quasi-monotone case, J. Optim. Theory Appl., 96(1998), 297-309.
[15.] I. V. Konnov and J. C. Yao, Existence solutions for generalized vector equilibrium problems, J. Math. Anal. Appl., 223(1999), 328-335.
[16.] I. V. Konnov and S. Schaible., Duality for equilibrium problems under generalized monotonicity, J. Optim. Theory Appl., 104(2000), 395-408.
[17.] P. Q. Khanh and L. M. Luu, On the existence of solutions to vector quasivariational inequalities and quasicomplementarity problems with applications to traffic Network equilibria, J. Optim. Theory Appl., 123(2004), 533-548.
[18.] L. J. Lin and Z. T. Yu, On some equilibrium problems for multivalued maps, J. Comput. and Appl. Math., 129(2001), 171-183.
[19.] L. J. Lin, Q. H. Ansari, and J. Y. Wu, Geometric properties, coincidence theorems, and existence results for generalized vector equilibrium problems, J. Optim. Theory Appl., 117(2003), 121-137.
[20.] L. J. Lin, System of generalized vector quasi-equilibrium Problem with application to fixed point theorems for a family of nonexpansive multivalued mappings, J. Global Optimization, (2005) (to appear).
[21.] L. J. Lin, M. F. Yang, Q.H. Ansari, and G. Kassay, Existence results for Stampachia and Minty type implicit variational inequalities with multivalued maps, Nonlinear Anal., 61(2005), 1-19.
[22.] L. J. Lin, Existence results for primal and dual generalized vector equilibrium problems with applications to generalized semi-infinite programming. J. Global Optimization, (2005) (to appear).
[23.] L. J. Lin, Mathematical programs with equilibrium constraints: the structure of the feasible set and the existence of feasible point, (preprint).
[24.] Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical programs with equilibrium constraint, Cambridge University Press, Cambridge, 1997.
[25.] D. T. Luc, Theory of Vector Optimization, Lecture Notes in Economic and Mathematical, system, Vol. 319, Springer, Berlin, 1989.
[26.] N. X. Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematicsche Nachrichen, 122(1985), 231-245.
[27.] N. X. Tan, On the existence of solutions of quasivariational inclusion problems, J. Optimi. Theory Appl., 123(2004), 619-638.
[28.] W. Takahashi, Nonlinear functional analysis, Yokohama Publishers, Yokohama 2000.
[29.] N. C. Yannelis, and N. D. Prabhakar, Existence of maximal element and equilibria in linear topological space, Journal of Mathematical Economics, 125(1983), 233-245.
Reference(II)
[1.] Aubin J. P. and Cellina A., (1994), Differential inclusions, Springer Verlag , Berlin, Heidelberg, Germany.
[2.] Ansari Q. H. and Yao J. C., (1999), An existence result for the generalized vector equilibrium problems, Applied Mathematics letters, 12, 53-56.
[3.] Aussel D. and Hadjisavvas N., (2004), On Quasimonotone Variational Inequalities, Journal of Optimization Theory and Applications, 121, 445-450.
[4.] Deguire P., Tan K. K. and Yuan G. X. Z., (1999), the study of maximal elements, fixed point for Ls-majorized mappings and the quasi-variational inequalities in product spaces, Nonlinear Analysis, 37, 933-951.
[5.] Konnov I. V. and Yao J. C., (1999), Existence solutions for generalized vector equilibrium problems, Journal of Mathematical Analysis and Applications, 223, 328-335.
[6.] Luc D. T., (1989), Theory of Vector Optimization, Lecture Notes in Economic and Mathematical, system, Vol 319. Springer, Berlin,.
[7.] Luc D. T. and Tan N. X., (2004), Existence conditions in variational inclusions with constraints, Optimization, 53, 505-515.
[8.] Lin L. J., (2005), System of generalized vector quasi-equilibrium problems with applications to fixed point theorems for a family of nonexpansive multivalued mapping, Journal of Global Optimization, (to appear).
[9.] Lin L. J., (2006), System of vector equilibrium with applications to fixed point theorems for family of $k$-contractive multivalued map, Taiwanese Journal of Mathematics, (to appear).
[10.] Lin L. J., Mathematical programs with equilibrium constraints: the structure of the feasible set and the existence of feasible point, (preprint).
[11.] Lin L. J., Yang M. F., Ansari Q. H. and Kassay G., (2005) Existence results for Stampachia and Minty type implicit variational inequalities with multivalued maps, Nonlinear Analysis, 61, 1-19.
[12.] Minh N. B. and Tan N. X., (2005), On the existence of solutions of quasi-variational inclusion problems of Stampacchia type, Advance in Nonlinear Variational Inequalities, 8, 1-16.
[13.] Tan N. X., (1985), Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematicsche Nachrichen, 122, 231-245.
[14.] Tan N. X., (2004), On the existence of solution of quasi-variational inclusion problems, Journal of Optimization Theory and Applications, 123, 619-638.
[15.] Takahashi W., (2000), Nonlinear functional analysis , Yokohama Publishers, Yokohama.
[16.] Yannelis N. C. and Prabhakar N. D., (1983), Existence of maximal element and equilibria in linear topological space, Journal of Mathematical Economics, 125, 233-245.
|