|
文獻參考 [1] The National Technology Roadmap for Semiconductors, 1997 Edition, SIA Semiconductor Industry Association. [2] L. R. Harriott, “Limits of lithography,” Proceeding of the IEEE, vol. 89, No. 3, Mar. 2001, pp.366-374. [3] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Applied Physics Letters, vol. 67, 1995, pp. 3114-3116. [4] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” Journal of Vacuum Science & Technology B, 14(6), 1996, pp. 4129-4133. [5] T. Matsuzaka, “The present position and future status of electron beam lithographyfor VLSI fabrication,” Microelectronic Engineering, vol. 35, 1998, pp. 3-9. [6] Chen, Y., Vieu, C. & Launois, H., “High resolution X-ray lithography and electron-beam lithography: limits and prospectives,” Condensed Matter News, vol. 6, 1998, pp. 22-30. [7] Lingjie Guo, Peter R Krauss, and Stephen Y Chou, “Nanoscale silicon field effect transistors fabricated using imprint lithography,” Applied Physics Letters, vol. 71, 1997, pp. 1881-1883. [8] H. C. Scheer and H. Schulz, “Problems of the nanoimprinting technique for nanometer scale pattern definition,” Journal of Vacuum Science & Technology B, 16(6), 1998, pp.3917-3921. [9] Dahl-Young Khang, and Hong H. Lee, ”Room-temperature imprint lithography by solvent vapor treatment,” School of Chemical Engineering, Seoul National University. Seoul, 151-742, Korea. [10] H. Schulz, H.C. Scheer, T. Hoffmann, and C. M. Sotomayor Torres, “New polymer materials for nanoimprinting,” Journal of Vacuum Science & Technology B, vol. 18, 2000, pp. 1861-1865. [11] H. Schift, C. David, and J. Gobrecht, “Quantitative analysis of the molding of nanostructures,” Journal of Vacuum Science & Technology B, vol. 18, 2000, pp. 3564-3568. [12] Yoshihiko Hirai et al., “Study of the resist deformation in nanoimprint lithography,” Journal of Vacuum Science & Technology B, vol. 19, 2001, pp. 2811-2815. [13] M.M. Alkaisi, R.J. Blaikie, S.J. McNab, “Low temperature nanoimprint lithography using silicon nitride mold,” Nanostructure, Engineering Science and Technology Group, Department of Electrical and Electronic Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. [14] A..Lebib, and Y. Chen “Room-temperature and low-pressure nanoimprint lithography,” Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France. [15] C. Clavijo Ceden�ko, J. Seekamp, A.P. Kam, T. Hoffmann, S. Zankovych, C.M. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, and J. Ahopelto, “Nanoimprint lithography for organic electronics,” Institute of Materials Science and Department of Electronics and Electrical Engineering, University of Wuppertal, Gauss-Str. 20, D-42097 Wuppertal, Germany. [16] A. Pe`pin, P. Youinou, V. Studer, A. Lebib, and Y. Chen, “Nanoimprint lithography for the fabrication of DNA electrophoresis chip,” Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France. [17] Won Mook Choi, and O.Ok Park, “A soft-imprint technique for direct fabrication of submicro scale patterns using a surface-modified PDMS mold,” Center for Advanced Function Polymers, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1, Gusong-Dong, Yuseong –Gu, Daejon 305-701, South Korea. [18] U. Plachetka, M. Bender, and H. Kurz, “Wafer scale patterning by soft UV-nanoimprint lithography,” AMICA/AMO Gmb H, Huyskensweg 25, Aachen 52074, Germany. [19] C.A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, and A. Errachid, “Production of structures for microfluidics usingpolymer imprint techniques,” Microelectronic Engineering, vol. 78, 2005, pp. 695-700.
|