跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王冠雄
論文名稱:硫化鎘晶體的光學特性研究
論文名稱(外文):Optical Characterization of Cadmium Sulfide Crystal
指導教授:石豫臺石豫臺引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:89
中文關鍵詞:硫化鎘光激螢光光譜反射光譜穿透光譜克拉馬-克羅尼
外文關鍵詞:CdSphotoluminescencereflectancetransmissionKramers-Kronig
相關次數:
  • 被引用被引用:0
  • 點閱點閱:549
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要利用變溫光激螢光、反射及穿透等光譜量測方法來探討硫化鎘晶體的光學特性。在變溫光激螢光光譜的研究方面,我們著重在探討螢光光譜的譜線位置、譜線積分強度及譜線寬度隨樣品溫度變化的情形。我們利用Varshni、O’Donnell及Pässler三個關係式來擬合硫化鎘的能隙隨溫度變化的關係,發現Pässler的模型最符合實驗數值,並藉此求得樣品的平均聲子溫度和聲子色散係數。另外,我們也使用單活化能與雙活化能模型分別擬合自由激子與束縛激子的光激螢光積分強度隨樣品溫度變化的關係。擬合結果可得自由激子與束縛激子的活化能,以及束縛激子被雜質束縛的束縛能。而從光激螢光的譜線寬度隨溫度變化的關係可以得知,在低溫時,聲學聲子為影響譜線寬度的主要因素,而在高溫時,則以縱向光學聲子為主因。我們並藉由譜線增寬數據與理論公式的擬合求得樣品的縱向光學聲子能量。另一方面,對於反射及穿透光譜的研究,我們利用諧振子模型來擬合反射光譜,定出硫化鎘晶體的三個激子訊號的位置。綜合反射光譜以及穿透光譜結果,並藉由克拉馬-克羅尼關係式,我們也求得樣品的吸收係數、介電常數、折射率等光學係數。
This thesis is devoted to the study on the optical properties of Cadmium Sulfide (CdS) crystal by taking temperature-dependent photoluminescence (PL), reflectance (R), and transmission (T) measurements. From the temperature-dependent PL spectra, a redshift of the PL peaks was observed as the temperature increased. The temperature dependence of CdS energy gap, determined from the PL spectra, was fitted according to Varshni, O’Donnell, and Pässler relations. Good fit was obtained using the Pässler relation. From the Pässler’s fit, the average phonon temperature and phonon dispersion coefficient of the CdS crystal were determined. The free exciton and bound exciton activation energies of A-exciton of the CdS crystal were determined by the plots of integrated PL intensity versus temperature. The temperature-dependent broadening of the PL linewidth was also investigated. The LA- and LO- phonon scatterings were found to be the dominant broadening mechanisms at low and high temperatures respectively. From the R and T spectra, the energies of A, B, and C excitons of the CdS crystal were identified. The R data were also used to perform the Kramers-Kronig transformation. The optical coefficients of the CdS crystal, such as the reflective index, the dielectric function, and the absorption coefficient, were determined.
第一章 緒論
1.1 硫化鎘的晶體結構
1.2 硫化鎘晶體的材料特性
1.2.1 能帶結構
1.2.2 發光特性與能隙大小
1.2.3 縱向光學聲子
1.2.4 吸收特性與激子


第二章 實驗基本原理
2.1 X光繞射
2.2 光激螢光基本原理
2.2.1 激子
2.2.2 施子-受子對與縱向光學聲子
2.2.3 溫度對能隙的影響
2.2.4 溫度對光激螢光光譜積分強度的關係
2.2.5 溫度對光激螢光光譜譜線寬度的影響
2.3 光學反射率
2.3.1 克拉馬-克羅尼關係式
2.3.2 諧振子模型理論
2.4 穿透光譜


第三章 實驗方法與儀器原理
3.1 硫化鎘晶體的來源與製備方法
3.2 儀器基本原理
3.2.1 單光儀
3.2.2 鎖相放大器
3.2.3 封閉式循環冷卻系統
3.3 光譜量測方法
3.3.1 光激螢光光譜量測
3.3.2 反射光譜量測
3.3.3 穿透光譜量測


第四章 實驗結果與討論
4.1 X光繞射實驗結果
4.2 低溫的光激螢光光譜
4.3 變溫光激螢光光譜
4.3.1 溫度對能隙的關係討論
4.3.2 光激螢光光譜積分強度對溫度的關係
4.3.3 光激螢光光譜譜線寬度對溫度的關係
4.4 反射光譜
4.4.1 反射光譜中激子訊號隨溫度變化的情形
4.4.2 偏振光對反射光譜的影響
4.4.3 克拉馬-克羅尼轉換
4.4.4 諧振子模型的擬合
4.5 穿透光譜與吸收光譜


第五章 結論


第六章 參考文獻
[1.01]中國陶瓷信息資訊網http://www.ccisn.com.cn/hwcz/reads.asp?id=1006
[1.02] S. Z. Karazhanov, J. Appl. Phys. 82, 5807 (1997).
[1.03] I. Visoly-Fisher, S. R. Cohen, D. Cahen, and C. S. Ferekides, Appl. Phys. Lett. 83, 4924 (2003).
[1.04] K. Kang and K. Daneshvar, J. Appl. Phys. 95, 646 (2004).
[1.05] J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, Appl. Phys. Lett. 84, 4472 (2004).
[1.06] K. M. Ip, C. R. Wang, Q. Li, and S. K. Hark, Appl. Phys. Lett. 84, 795 (2004).
[1.07] T. Gao, Q. H. Li, and T. H. Wang, Appl. Phys. Lett. 86, 173015 (2005).
[1.08] D. Kulik, H. Htoon, C. K. Shih, and Y. Li, J. Appl. Phys. 95, 1056 (2004).
[1.09] C. Wang, K. M. Ip, S. K. Hark, and Q. Li, J. Appl. Phys. 97, 054303 (2005).
[1.10] Y. Long, Z. Chen, W. Wang, F. Bai, A. Jin, and C. Gu, Appl. Phys. Lett. 86, 153102 (2005).
[1.11] C. Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992).
[1.12] J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
[1.13] M. Schön and Z. Physik 119, 463 (1942).
[1.14] H. A. Klasens, Nature 158, 306 (1946).
[1.15] J. Lambe and C. C. Klick, Phys. Rev. 98, 909 (1955).
[1.16] J. L. Birman, Phys. Rev. Lett. 2, 157 (1959).
[1.17] J. L. Birman, Phys. Rev. 114, 1490 (1959).
[1.18] F. A. Kroger, Physica 7, 1 (1940).
[1.19] C. C. Klick, Phys. Rev. 89, 274 (1953).
[1.20] J. J. Lambe, C. C. Klick, D. L. Dexter, Phys. Rev. 103, 1715 (1956).
[1.21] J. J. Hopfield and D. G. Thomas, Phys. Rev. 122, 35 (1961).
[1.22] L. S. Pedrotti and D. C. Reynolds, Phys. Rev. 120, 1664 (1960).
[1.23] D. G. Seiler, D. Heiman, R. Feigenblatt, R. L. Aggarwal, and B.
Lax, Phys. Rev. B 25, 7666 (1982).
[1.24] C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 1351 (1969).
[1.25] R. C. C. Leite, J. F. Scott, and T. C. Damen, Phys. Rev. Lett. 22, 780 (1969).
[1.26] M. V. Klein and S. P. S. Porto, Phys. Rev. Lett. 22, 782 (1969).
[1.27] R. Marshall and S. S. Mitra, Phys. Rev. 134, A1019 (1964).
[1.28] D. Dutton, Phys. Rev. 112, 785 (1958).
[1.29] D. G. Thomas and J. J. Hopfield, Phys. Rev. 116, 573 (1959).
[1.30] Y. S. Park and D. C. Reynolds, Phys. Rev. 132, 2450 (1963).
[1.31] D. C. Reynolds, C. W. Litton, and T. C. Collins, Phys. Rev. 174, 845 (1968).
[1.32] J. Wicksted, M. Matsushita, H. Z. Cummins, T. Shigenari, and X. Z. Lu, Phys. Rev. B 29, 3350 (1984).
[1.33] M. Matsushita, J. Wicksted, and H. Z. Cummins, Phys. Rev. B 29, 3362 (1984).
[1.34] M. Z. Huang and W. Y. Ching, Phys. Rev. B 47, 9449 (1993).
[1.35] M. Z. Huang and W. Y. Ching, Phys. Rev. B 47, 9464 (1993).
[1.36] A. Imada, S. Ozaki, and S. Adachi, J. Appl. Phys. 92, 1793 (2002).
[2.01]余樹楨,晶體之結構與性質,初版(渤海堂,台北市,1987)。
[2.02] B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, London, 1978).
[2.03] C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley, New York, 1996).
[2.04] E. N. Kaufmann, Characterization of Materials (John Wiley, New York, 2003), Vol. II.
[2.05]M Fox, Optical properties of solids (Oxford , New York, 2001).
[2.06] W. Liu, M. F. Li, S. J. Xu, K. Uchida, and K. Atsumoto, Semicond. Sci. Technol. 13 (1998).
[2.07] Y. P. Varshni, Physica 34, 149 (1967).
[2.08] L. Viña, S. Logothetidis, and M. Cardona, Phy. Rev. B 30, 1979 (1984).
[2.09] K. P. O’Donnell and X. Chen, Appl. Phys. Lett. 58, 2924 (1991).
[2.10] R. Pässler, Phys. Stat. Sol. (b) 193, 135 (1996).
[2.11] R. Pässler, Solid State Electronics 39, 1311 (1996).
[2.12] R. Pässler, J. Appl. Phys. 88, 2570 (2000).
[2.13] D. N. Talwar, M. Vandevyver, K. Kunc, and M. Zigone, Phys. Rev. B 24, 741 (1981).
[2.14] J. D. Lambkin, D. J. Dunstan, K. P. Homewood, and L. K. Howard, Appl. Phys. Lett. 57, 1986 (1990).
[2.15] J. Krustok, H. Collan, and K. Hjelt, J. Appl. Phys. 81, 1442 (1997).
[2.16] Y. M. Yu, S. Nam, and K. S. Lee, J. Appl. Phys. 90, 807 (2001).
[2.17] D. Bimberg and M. Sondergeld, Phy. Rev. B 4, 3451 (1971).
[2.18] J. Lee, E. S. Koteles, and M. O. Vassell, Phys. Rev. B 33, 5512 (1986)
[2.19] D. G. Thomas, M. Gershenzon, and F. A. Trumbore, Phys. Rev. 133, A269 (1964).
[3.01] 楊志明,氧氣擴散對C60晶體的影響(中原大學應用物理研究所碩士論文,2003)。
[3.02] 楊建人譯,光學原理,初版(徐氏基金,台北市,1977)。
[3.03] E. Hecht, Optics, 4th ed. (Addison-Wesley, New York, 2002).
[3.04] Traix 550 Fully Automated Imaging Spectrometers, User’s manual (Jobin Yvon, Edison, 1999).
[3.05] Model 410 Analogue Single Phase Lock-in Amplifier, User’s manual (Scitec Instruments Ltd, Redruth).
[3.06] 呂助增、鄭伯昆合著,實驗物理方法(聯經出版社,台北市,1990)。
[3.07] Closed cycle refrigerator system manual, User’s manual (Janis Research Company, Inc., Wilmington, 2002).
[4.01] D. S. Chuu and C. M. Dai, Phys. Rev. B 45, 11805 (1992).
[4.02] H. S. Kwok, J. P. Zheng, S. Witanachchi, P. Mattocks, L. Shi, Q. Y. Ying, X. W. Wang, and D. T. Shaw, Appl. Phys. Lett. 52, 1095 (1988).
[4.03] A. L. Dawar, P. K. Shishodia, G. Chauhan, A. Kumar, and P. C. Mathur, J. Appl. Phys. 67, 6214 (1990).
[4.04] T. D. Dzhafarov, M. Altunbas, A. I. Kopya, V. Novruzov, and E. Bacaksiz, J. Phys. D: Appl. Phys. 32, L125 (1999).
[4.05] 蔡成宗,CdMnS與ZnMnSe薄膜之製作及其物理特性之研究(國立交通大學電子物理研究所博士論文,1997)。
[4.06] Y. S. Park and D. C. Reynolds, Phys. Rev. 132, 2450 (1963).
[4.07] D. G. Thomas and J. J. Hopfield, Phys. Rev. 116, 573 (1959).
[4.08] D. G. Seiler, D. Heiman, R. Feigenblatt, R. L. Aggarwal, and B. Lax, Phys. Rev. B 25, 7666 (1982).
[4.09] J. Wicksted, M. Matsushita, H. Z. Cummins, T. Shigenari, and X. Z. Lu, Phys. Rev. B 29, 3350 (1984).
[4.10] D. G. Seiler, D. Heiman, and B. S. Wherrett, Phys. Rev. B 27, 2355 (1983).
[4.11] D. G. Thomas, M. Gershenzon, and F. A. Trumbore, Phys. Rev. 133, A269 (1964).
[4.12] D. C. Reynolds and T. C. Collins, Phys. Rev. 188, 1267 (1969).
[4.13] K. Colbow, Phys. Rev. 141, 742 (1966).
[4.14] M. V. Klein and S. P. S. Porto, Phys. Rev. Lett. 22, 782 (1969).
[4.15] A. Zubiaga, J. A. Garcia, F. Plazaola, V. Munoz-Sanjose, and M. C. Martinez-Toma´s, J. Appl. Phys. 92, 7330 (2002).
[4.16] W. Liu, M. F. Li, S. J. Xu, K. Uchida, and K. Matsumoto, Semicond. Sci. Technol. 13, 769 (1998).
[4.17] D. Kim, I. H. Libon, C. Voelkmann, Y. R. Shen, and V. Petrova-Koch, Phys. Rev. B 55, R4907 (1997).
[4.18] PeakFit, Peak Separation And Analysis Software, User’s Manual, (Seasolve Software Inc., USA, 2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊