跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陸懷仁
研究生(外文):Huai-Jen Lu
論文名稱:光纖通訊傳輸系統中偏極化模態色散的量測與補償
論文名稱(外文):Polarization Mode Dispersion Measurement and Compensation in Fiber-Optic Transmission System
指導教授:董正成
指導教授(外文):Jeng-Cherng Dung
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:63
中文關鍵詞:偏極化模態色散補償
外文關鍵詞:PMDcompensation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 當傳輸速率及傳輸距離的需求越來越高,偏極化模態色散(PMD)在光纖傳輸系統中便成為一個值得深入探討的問題。本篇論文最主要的研究方向是在探討偏極化模態色散的量測與補償的系統。 偏極化模態色散量測的方法有非常多種,如:Pulse delay method、Interferometric method、以及Poincaré sphere method等等,由於Poincaré sphere method擁有架構簡單、控制容易、高精確度以及可提供非常多極化狀態的資訊等優點,因此本論文選用Poincaré sphere method作為在頻域底下量測偏極化模態色散的方法。實驗的過程是利用偏極化計量器將量測到的參數傳輸進電腦,再利用Labview程式做即時的監控及計算而得到PMD值。利用此量測架構,誤差率可達1.1%以下。 接著我們架設了一套偏極化模態色散的補償系統。我們用一段有固定Differential Group Delay (DGD)的極化保持光纖 (PMF)去設計一個即時的補償系統,利用線性極化程度(DOLP)當作回授控制參數,由Labview程式即時監控,並即時計算所需電壓,輸出至壓控偏極化控制卡,將最後輸出信號的線性極化程度(DOLP)最大化以達到補償的效果。在實際情況下,傳輸光纖有可能在任何時間被扭轉、彎曲及移動,所以我們模擬三種可能在實際傳輸中發生的情況,在這三種情況下,我們均可在幾秒鐘內將輸出信號的DOLP最大化。進而驗證我們提出的自動化補償系統可以實際應用在真實光纖傳輸系統中。
ABSTRACT As the raising of the requirement of the transmission bit rate and length, Polarization Mode Dispersion (PMD) has become an important issue in fiber transmission system. In this thesis, we mainly discuss the PMD measurement and compensation system. There are many methods to measure PMD, such as Pulse delay method、Interferometric method、and Poincaré sphere method, etc.. Based on the advantages of easy to construct, easy to control, high accuracy, and offering plenty of information of polarization states, we adopt Poincaré sphere method in the frequency domain to measure PMD in our laboratory. We can restrain the error rate under 1.1﹪by using this measurement setup. We built up a PMD compensation system by using a polarization maintaining fiber (PMF) with a fixed differential group delay to design a real-time compensation system based on the PMD measurement setup. We use degree of linear polarization (DOLP) as a feedback control parameter. We also use Labview programs to monitor and calculate the voltages that would dynamically transmit to the voltage controlled polarization controller in order to maximize the DOLP of the system output signal to achieve the compensation. In real circumstances, the transmission fiber could be twisted, bended or moved in anytime. So we simulate three situations that could be possibly happened in real systems while performing the automatic compensation. In these three situations, we can maximize the DOLP of the output signal in a few seconds. We proved the automatic compensation system that we purposed could be applied to real fiber communication system.
Contents 摘 要.............................................................................................................I ABSTRACT.................................................................................................II List of Figures..............................................................................................V List of Tables.............................................................................................VII Chapter 1 Introduction..................................................................................1 Chapter 2 Basic Concept of PMD Effect......................................................7 2.1 Origin of Polarization Effects in Fiber............................................7 2.2 The Mechanism of PMD Effect.....................................................10 2.2.1 Polarization Effects in Short Fibers.....................................10 2.2.2 Polarization Effects in Long Fibers Spans...........................14 2.3 Principal States Model...................................................................18 2.4 Stokes Vector..................................................................................21 2.5 Definition of PMD.........................................................................23 Chapter 3 The PMD Measurement.............................................................26 3.1 PMD Measurement Methods.........................................................26 3.1.1 Pulse Delay Measurement....................................................26 3.1.2 Interferometric Method........................................................27 3.1.3 Poincaré Sphere Method......................................................29 3.2 Poincaré Sphere Method................................................................30 3.2.1 Polarization States In Frequency Domain...........................30 3.2.2 Wavelength Dependence of Output Polarization [19].........32 3.2.3 Analyzing Techniques of Poincaré Sphere Method............35 3.2.4 Three Point Method.............................................................37 3.3 Experimental setup of PMD measurement....................................38 3.4 Experimental results of PMD measurement..................................40 3.4.1 Experimental result of the Poincaré sphere method............40 3.4.2 Experimental result of the Three-point method...................42 3.5 Discussion and conclusion.............................................................44 Chapter 4 The PMD Compensation............................................................45 4.1 Introduction....................................................................................45 4.1.1 PMD compensation techniques............................................45 4.1.2 Relationship of the degree of linear polarization.................47
IV
4.2 Experimental Setup of PMD Compensation..................................48 4.3 Experimental results of PMD compensation.................................49 4.3.1 Using tunable laser as the light source.................................49 4.4 Discussion and conclusion.............................................................51 Chapter 5 Conclusion..................................................................................52 Reference....................................................................................................53
Reference

[1] Agrawal, G.P. , Fiber optic Communication Systems, Second Edition, John
Wiley, New York, NY, 1997.
[2] Agrawal, G. P., “Nonlinear Fiber Optics”, Second Edition, Academic Press,
New York, 1995.
[3] Frigo, N.J.1986.”A generalized geometrical representation of coupled mode
theory” ,IEEE J. Quantum Electron. QE-22:2131-2140.
[4] Kaminow, J. P. 1981. “Polarization in optical fibers’, IEEE J. Quantum Electron.
QE-17:15-22.
[5] Rashleigh,S.C., and R. Ulrich.1978. “Polarization mode dispersion in single mode
fibers”, Opt. Lett. 3:60-62.
[6] Burns, W.K., R. P. Moeller, and C. Chen.1983. “Depolarization in a single mode
optical fiber”, IEEE J. Lightwave Tech. LT-1:44-49.
[7] Poole, C. D., J. H. Winters, and J. A. Nagel. 1991. “Dynamical equation for
polarization dispersion”, Opt. Lett. 16:372-374.
[8] Poole, C. D., and C. R. Giles. 1988. “Polarization dependent pulse compression
and broadening due to polarization in dispersion shifted fiber”, Opt.Lett.13:155-157
[9] M. Born and E. Wolf, “Principles of optics,” Pergammon Press, Oxford, 1980.
[10] L. E. Nelson, R. M. Jopson, and H. Kogelnik, “Müller matrix method for determining polarization mode dispersion vectors,” in Proc. ECOC 1999, vol. II, Nice, France, Sept. 26–30, 1999, pp. 10–11.
[11] G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion
in single mode fibers,” J. Lightwave Technol., vol. 9, pp. 1439–1456, 1991.
[12] J. P. Gordon and H. Kogelnik, ‘‘PMD fundamentals: polarization mode dispersion in optical fibers,’’ Proc. Natl. Acad. Sci. U.S.A. 97, 4541–4550 (2000).
[13] M. Karlsson and J. Brentel, “Autocorrelation function of the polarizationmode
dispersion vector,” Opt. Lett., vol. 24, pp. 939–942, 1999.
[14] Gisin, N., R. Passy, B. Perny, A. Galtarossa, C. Someda, F bergamin, M. Schiano, and F. Matera. 1991. “Experimental comparison between two different methods
for measuring polarization mode dispersion in single mode fibers”, Electron. Lett.27:2292-2293.
[15] Gisin, N., J. Von der Weid, and J. Pellaux. 1991. “Polarization mode dispersion
of short and long single fibers”, IEEE J. Lightwave Tech. LT-9:821-827.
[16] Galtarossa, A., and M. Schiano. 1993. “Polarization mode dispersion in high
density ribbon cables”, In Proceedings of the Optical Fiber Measurement
Conference, 181-184.
[17] Anderesciani, D., F. Curti, F. Matera, and B. Daino. 1987. “Measurement of the
group delay difference between the principal states of polarization on a low
birefringence terrestrial fiber cable”, Opt. Lett. 12:844-846.
[18] N. Gisin and J. P. Pellaux, ‘‘Polarization mode dispersion: time versus frequency domains,’’ Opt. Commun. 89, 316–323 (1992).
[19] Eickhoff, W., Y. Yen, and R. Ulrich. 1981. “Wavelength dependence of
birefringence in single mode fiber”, Appl. Opt. 20:3428-3435.
[20] Poole, C. D., Neal, S. Bergano, R. E. Wagner, and Schulte H. J. 1988.
“Polarization Dispersion and Principal states in a 147km undersea lightwave
cable”, IEEE. J. Lightwave. Tech. Vol6, No7 1185-1190
[21] F. Heismann, D. A. Fishman, and D. L. Wilson, “Automatic compensation of first order polarization mode dispersion in a 10 Gb/s transmission system”,
ECOC”98,pp.529-530(1998)
[22] N. Gisin, “Coherent quantum measurement for the direct determination of the degree of polarization and polarization mode dispersion compensation”,
arXiv: quant-ph/0010036 V1 9, Oct. 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top