跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施明德
研究生(外文):Shih Ming-Der
論文名稱:大豆第四群晚胚蛋白質的結構特性
論文名稱(外文):Structural characterization of soybean group 4 LEA proteins
指導教授:邢禹依邢禹依引用關係
指導教授(外文):Hsing Yue-Ie
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:176
中文關鍵詞:晚胚蛋白大豆乾燥耐受性蛋白質二級結構圓二色光譜傅立葉紅外線轉換光譜自然非折疊蛋白質玻璃質態
外文關鍵詞:Late embryogenesis abundantSoybeanDesiccation toleranceSecondary structuresCircular dichroismFourier transform infraredNatively unfolded proteinsGlassy stateGlass transition temperatureWavenumber-temperature coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
在種子發育晚期,乾物質不再累積,細胞含水量開始降低,種子也逐漸進入休眠狀態。有許多新的蛋白質在這階段才開始合成與累積在細胞中,其功能可能與種子的發芽、休眠或耐旱等機制有關。這些新的蛋白質中,一種被稱為晚胚蛋白質(Late embryogenesis abundant proteins)的蛋白質已廣泛的在原核生物、真菌、植物、以及動物界等物種的細胞中發現。根據不同的分類標準,晚胚蛋白被分為六群(利用胺基酸組成的特性與保守性序列)或至少四群(利用保守性胺基酸殘基)。晚胚蛋白的功能至今仍不清楚,但從基因表現型式、定位分析、蛋白質化學特性、以及轉殖基因的研究,研究人員認為晚胚蛋白可能是一種乾旱保護劑(desiccation protectant),作為促進植物細胞抵抗缺水環境的工具之一。在正儲型種子獲得乾化耐受性(desiccation tolerance)的研究中,晚胚蛋白與非還原醣(non-reducing sugars)或許是最重要,也可能是研究最多的關鍵因子。晚胚蛋白與非還原醣的交互作用已被建議是增加種子乾化耐受性的方式,但詳細的作用機制仍有許多未知處有待研究。
在本論文中,將針對三種不同型態的第四群晚胚殖系,即GmPM1、GmPM16與GmPM28殖系,以分子生物學、細胞生物學、生物化學與生物物理學等方式,探討第四群晚胚基因的表現,以及其對應蛋白質的生理功能。本論文的第一部份為GmPM16蛋白質特性的研究。GmPM16蛋白質為一種具小分子量、高等電點,以及特殊的胺基酸殘基分佈型式的鹼性蛋白質。北方式墨點與數位北方式(digital Northern)分析法指出GmPM16轉錄物主要表現在種子。原位雜交(in situ hybridization)分析則發現GmPM16轉錄物主要累積在4 DPD種子的子葉葉肉細胞,但沒有在子葉維管束組織中發現。圓二色(circular dichroism,CD)及傅立葉紅外線轉換(Fourier transform infrared,FTIR)光譜分析指出GmPM16蛋白質在水溶液狀態下為不規則的鬆散結構,並存在有限的規則性二級結構。GmPM16蛋白質在水溶液狀態下無法與還原醣類產生交互作用,但可在SDS或TFE之類的-螺旋促進劑溶液中折疊出大量的-螺旋結構。另一方面,GmPM16蛋白質在完全乾燥的情況下也能誘導出大量的-螺旋結構。GmPM16蛋白質與非還原醣在脫水的情況下所形成的玻璃質態(glassy matrix),具有較高的璃質態轉換溫度(Tg)及較低的波溫係數(wavenumber–temperature coefficient,WTC)。這個結果顯示GmPM16蛋白質與非還原醣發生緊密的交互作用。因此,蛋白質/非還原醣玻璃質可能在脫水種子中扮演降低細胞損害的角色。
本論文的第二部份是針對另外兩個大豆第四群晚胚蛋白質,分別是鹼性的GmPM1與酸性的GmPM28蛋白質。數位北方式分析法顯示GmPM1轉錄物主要表現在種子及逆境處理的營養器官,而GmPM28則為具種子專一性的基因。流體動力及折疊狀態的計算結果顯示,高親水性晚胚蛋白質屬於自然非折疊蛋白質(natively unfolded proteins)的一種。CD與FTIR光譜分析也證明GmPM1與GmPM28蛋白質在水溶液中為不規則的鬆散結構,但提高溫度時光譜顯示蛋白質出現進一步的解鬆。CD差光譜(difference spectra)顯示GmPM1與GmPM28蛋白質在低溫下具有左旋性伸展螺旋(left-handed extended helical),或稱為poly (L-proline)-type II(PPII)結構。兩種蛋白在水溶液狀態下無法與還原醣類產生交互作用,但可以在SDS或TFE溶液中折疊出-螺旋結構。另一方面,GmPM1與GmPM28蛋白質在完全乾燥的情況下也能誘導出-螺旋結構。兩種蛋白質分別與非還原醣在脫水的情況下所形成的玻璃質態,與非還原醣玻璃質態相較,有較高的璃質態轉換溫度及較低的波溫係數;但與GmPM16蛋白質/非還原醣玻璃質態比較,其玻璃質態的緊密度較低。以上結果顯示這三種不同型態的第四群晚胚蛋白質均屬於自然非折疊蛋白質,在疏水或脫水環境下能形成規則性的二級結構。此外,第四群晚胚蛋白質都能與非還原醣所構成的緊密玻璃質態,這可能是第四群晚胚蛋白質的一般特性。
我們的結論認為大豆第四群晚胚基因具有複雜的調控機制,其對應的蛋白質則屬於自然非折疊蛋白質。第四群晚胚蛋白質在疏水或脫水環境下重新折疊出大量有規則性,如-螺旋結構的二級結構,此外,第四群晚胚蛋白質與非還原醣在脫水環境下所形成的玻璃質態顯示兩者有密切的交互作用。晚胚蛋白質在玻璃質態中可能扮演一種類似船錨的角色,並使玻璃質態更為緊密。鑑於以上結果,根據蛋白質的「結構-功能」範式,我們認為第四群晚胚蛋白質可能依據細胞的含水狀態而具有雙重的功能。
Abstract
Late embryogenesis abundant (LEA) proteins are synthesized in seeds at a late stage of development. During this stage, the newly synthesized seed protein profile is very different from that of the mid-development stage and is associated with desiccation tolerance. LEA proteins have been widely reported from organisms including prokaryotes and fungus, and in plant and animal kingdoms and classified into 6 groups, on the basis of amino acid sequence and conserved motifs, or 4 groups, by computer analysis with the POPP package. Gene expression pattern, localization analysis, protein chemical properties, and transgenic plant analysis has led to the proposal that LEA proteins may play a protective role in cell survival under desiccation. In higher plants, anhydrobiosis (orthodox) seeds may maintain germination ability for decades or even centuries under favorable conditions. Desiccation tolerance usually refers to tolerance to anhydrobiosis. The presence of LEA proteins and non-reducing sugars may be the most important and probably best-known key factors in acquisition of desiccation tolerance in seeds. The interaction between LEA proteins and sugars is suggested to be involved in enhanced desiccation tolerance. However, further investigations are required. For this objective, the soybean LEA 4 proteins were used as model system to investigate protein characteristics and the relation between LEA proteins and sugars.

The first part of this thesis is the characterization of GmPM16 protein, a soybean LEA 4 protein. The protein has a low molecular weight, high pI value, and an unusual amino acid residue distribution along the protein. Northern blot and digital Northern analysis indicate that GmPM16 transcripts are expressed mainly in seeds. In situ hybridization study reveals that the transcripts are detected in cotyledon mesophyll cells but not in the vascular system of mature or pod-dried soybean seeds. Circular dichroism (CD) analysis and Fourier transform infrared (FTIR) spectroscopy revealed that GmPM16 proteins in solution are highly disordered, possessing only a small portion of -helical structures, and the proteins in sodium dodecyl sulfate (SDS) or trifluoroethanol (TFE) solutions exhibit abundant -helical structures. Proteins and non-reducing sugars do not interact in the aqueous state. However, GmPM16 proteins undergo dehydration-induced conformational changes and adopt high amount -helical structures. Drying the mixture of proteins and non-reducing sugars results in the formation of a glassy state with relatively high glass transition temperature (Tg) and low wavenumber-temperature coefficient (WTC) values. It is thus suggested that GmPM16 proteins interact with sugar and form tightly glassy matrixes in the dry state. The protein-sugar glasses may play a role in reducing cellular damage in drying seeds by changing protein conformation as well as forming tight cellular glassy matrices.
The second part in this thesis is the characterization of 2 soybean LEA 4 proteins, including basic GmPM1 protein and acidic GmPM28 protein. Digital Northern analysis indicates that GmPM1 transcripts are expressed mainly in seeds and abiotic-stressed vegetative tissues, while GmPM28 transcripts are expressed specifically in seeds. The hydrodynamic data and calculation of folding status indicate that the hydrophilic LEA proteins belong to natively unfolded proteins. CD and FTIR spectra indicate that both proteins in solution are highly unfolded. However, CD spectra collected at different temperatures illustrate that the protein exists in equilibrium between 2 extended conformational states, such as unordered and left-handed extended helical or poly (L-proline)-type II structures. Both proteins adopt a largely ordered conformation in the presence of -helical promoting co-solvents or in the dry state but proteins and nonreducing sugars do not interact in the aqueous state. Drying a mixture of GmPM1 or GmPM28 proteins and nonreducing sugars results in the formation of a glassy matrix with higher Tg and lower WTC values. All 3 different types of soybean LEA 4 proteins studied adopt dehydration-induced -helical conformations and interact with sugars in the dry state, which indicates that the changes may be common characteristics of LEA 4 proteins.
We conclude that soybean Lea 4 genes contain complicated expression patterns and their proteins are members of natively unfolded proteins. LEA 4 proteins give hydrophobic- and dehydration-induced conformational changes, from highly disordered to highly -helical structures, and interact with sugars to form a protein-sugar glassy matrix in the dry state. High Tg and low WTC values suggest that these proteins may be anchored to compact the cellular bioglasses. According to the protein structure-function paradigm, it is suggested that LEA 4 proteins may play bipartite roles depending on the aqueous status of cells.
List of abbreviations---------------------------------------------------------------------- 1
Chinese abstract--------------------------------------------------------------------------- 2
Abstract------------------------------------------------------------------------------------ 5
Chapter 1 Introduction------------------------------------------------------------------- 8
Anhydrobiosis---------------------------------------------------------------- 8
Acquisition of desiccation tolerance in seeds---------------------------- 9
Aims of this thesis----------------------------------------------------------- 13
References-------------------------------------------------------------------- 14
Chapter 2 Literature Review------------------------------------------------------------ 18
Introduction------------------------------------------------------------------- 18
The classification of LEA proteins---------------------------------------- 19
The regulation of Lea genes------------------------------------------------ 28
Anhydrobiosis and LEA proteins------------------------------------------ 36
The structure of LEA proteins--------------------------------------------- 44
Conclusion-------------------------------------------------------------------- 51
Tables-------------------------------------------------------------------------- 52
References-------------------------------------------------------------------- 57
Chapter 3 Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16-----------------------------------------------------
78
Introduction------------------------------------------------------------------- 78
Materials and Methods------------------------------------------------------ 81
Results------------------------------------------------------------------------- 85
Discussion-------------------------------------------------------------------- 92
Tables-------------------------------------------------------------------------- 96
References-------------------------------------------------------------------- 98
Figure legends---------------------------------------------------------------- 103
Figures------------------------------------------------------------------------- 106
Chapter 4 Characterization of two soybean (Glycine max L.) LEA 4 proteins - CD and FTIR studies--------------------------------------------------------
114
Introduction------------------------------------------------------------------- 114
Materials and Methods------------------------------------------------------ 116
Results------------------------------------------------------------------------- 120
Discussion-------------------------------------------------------------------- 126
Tables-------------------------------------------------------------------------- 133
References-------------------------------------------------------------------- 135
Figure legends---------------------------------------------------------------- 141
Figures------------------------------------------------------------------------ 143
Chapter 5 General Discussion---------------------------------------------------------- 150
The effects of hexa His tag in recombinant group 4 LEA proteins--- 150
Desiccation tolerance and LEA proteins---------------------------------- 151
The expression of Lea 4 genes--------------------------------------------- 151
Role of LEA 4 proteins in dehydrating tissues--------------------------- 153
Role of LEA 4 proteins in anhydrobiotic tissues------------------------ 155
Conclusion and future work------------------------------------------------ 158
References-------------------------------------------------------------------- 160
Tables-------------------------------------------------------------------------- 164
Chapter 6 Appendix---------------------------------------------------------------------- 165
FTIR techniques------------------------------------------------------------- 165
Crystallization studies------------------------------------------------------- 166
NMR analysis---------------------------------------------------------------- 166
Transgenic plants------------------------------------------------------------ 167
Heterogenous expression--------------------------------------------------- 168
In vitro translation assay---------------------------------------------------- 168
The expression patterns of Arabidopsis Lea genes---------------------- 168
Tables-------------------------------------------------------------------------- 170
Figure legends---------------------------------------------------------------- 171
Figures------------------------------------------------------------------------ 172
Adzhubei, A.A. and Sternberg, M.J. 1993. Left-handed polyproline II helices commonly occur in globular proteins. J Mol Biol 229:472-493.
Almoguera, C., and Jordano, J. 1992. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol 19: 781-792.
Arenas-Mena, C., Raynal, M., Borrell, A., Varoquaux, F., Cutanda, M.C., Stacy, R.A., Pages, M., Delseny, M., and Culianez-Macia, F.A. 1999. Expression and cellular localization of Atrab28 during Arabidopsis embryogenesis. Plant Mol Biol 40: 355-363.
Babu, R.C., Zhang, J., Blum, A., Ho, T.-H.D., Wu, R., and Nguyen, H.T. 2004. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855-862.
Baker, J., Steel, C., and Dure III, L. 1988. Sequence and characterization of 6 LEA proteins and their genes from cotton. Plant Mol Biol 11: 277-291.
Baker, S.S., Wilhelm, K.S., and Thomashow, M.F. 1994. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701-713.
Bartels, D., Singh, M., and Salamini, F. 1988. Onset of desiccation tolerance during development of the barley embryo. Planta 174:485-492.
Ben, R.N. 2001. Antifreeze glycoproteins-preventing the growth of ice. Chembiochem 2:161-166.
Bies, N., Aspart, L., Carles, C., Gallois, P., and Delseny, M. 1998. Accumulation and degradation of Em proteins in Arabidopsis thaliana: Evidence for post-transcriptional controls. J Exp Bot 49: 1925-1933.
Bies-Etheve, N., Conceicao, A.D., Giraudat, J., Koornneef, M., Leon-Kloosterziel, K., Valon, C., and Delseny, M. 1999. Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation. Plant Mol Biol 40:1045-1054.
Blackman, S.A., Obendorf, R.L., and Leopold, A.C. 1995. Desiccation tolerance in developing soybean seeds: The role of stress proteins. Physiol Plant 93:630-638.
Blackman, S.A., Wettlaufar, S.H., Obendorf, R.L., and Leopold, A.C. 1991. Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol 96: 868-874.
Blackwell, T.K. and Weintraub, H. 1990. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250:1104-1110.
Bochicchio, A., Vazzana, C., Puliga, S., Alberti, A., Cinganelli, S., and Vernieri, P. 1998. Moisture content of the dried leaf is critical to desiccation tolerance in detached leaves of the resurrection plant Boea hygroscopica. Plant Growth Regul 24:163-170.
Borrell, A., Cutanda, M.C., Lumbreras, V., Pujal, J., Goday, A., Culianez-Macia, F.A., and Pages, M. 2002. Arabidopsis thaliana atrab28: a nuclear targeted protein related to germination and toxic cation tolerance. Plant Mol Biol 50:249-259.
Bostock, R.M. and Quatrano, R.S. 1992. Regulation of Em gene expression in rice. Interaction between osmotic stress and abscisic acid. Plant Physiol 98:1356-1363.
Bradford, K.J. and Chandler, P.M. 1992. Expression of "dehydrin-like" proteins in embryos and seedlings of Zizania palustris and Oryza sativa during dehydration. Plant Physiol 99:488-494.
Bray, E.A. 1994. Alteration in gene expression in response to water deficit. In: Basra AS (eds) Stress-Induced Gene Expression in Plants. pp. 1-23. Harwood Academic Publishers. USA.
Browne, J., Tunnacliffe, A., Burnell, A. 2002. Anhydrobiosis: plant desiccation gene found in a nematode. Nature 416: 38.
Calvo, E.S., Wurtle, E.S., and Shoemaker, R.C. 1997. Cloning, mapping, and analyses of expression of the Em-like gene family in soybean [Glycine max (L) Merr]. Theor Appl Genet 94:957-967.
Campbell, S.A. and Close, T.J. 1997. Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61-74.
Carpenter, J.F. and Crowe, J.H. 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiology 25:244-255.
Ceccardi, T.L., Meyer, N.C., and Close, T.J. 1994. Purification of a maize dehydrin. Protein Expr Purif 5:266-269.
Chen, C.-N., Chu, C.-C., Zentella, R., Pan, S.M., and Ho, T.-H.D. 2002. AtHVA22 gene family in Arabidopsis: phylogenetic relationship, ABA and stress regulation, and tissue-specific expression. Plant Mol Biol 49:633-644.
Chen, Z.-Y., Hsing, Y.-I.C., Lee, P.-F., and Chow, T.-Y. 1992. Nucleotide sequences of a soybean cDNA encoding an 18 kilodalton late embryogenesis abundant protein. Plant Physiol 99:773-774.
Cheng, J.-C., Seeley, K.A., Goupil, P., and Sung, Z.-R. 1996. Expression of DC8 is associated with, but not dependent on embryogenesis. Plant Mol Biol 31:127-141.
Cheng, Z.-Q., Targolli, J., Huang, X.-Q., and Wu, R. 2002. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71-82.
Choi, H., Hong, J., Ha, J., Kang, J., and Kim, S.Y. 2000. ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723-1730.
Choi, J.-H., Liu, L.-S., Borkird, C., and Sung, Z.-R. 1987. Cloning of genes developmentally regulated during plant embryogenesis. Proc Natl Acad Sci USA. 84:1906-1910.
Chou, J.-H. and Fasman, G.D. 1978. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol 47:45-148.
Chung, H.-J., Fu, H.-Y., and Thomas, T.L. 2005. Abscisic acid-inducible nuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulated expression of the carrot Dc3 gene. Planta 220:424-433.
Close T.J., Fenton, R.D., Yang, A., Asghar, R., DeMason, D.A., Crone, D.E., Meyer, N.C., and Moonan, F. 1993. Dehydrin: the protein. In: Close TJ, Bray EA (eds) Plant Responses to Cellular Dehydration during Environmental Stress. Current Topics in Plant Physiology, vol. 10, pp. 104-118. American Society of Plant Physiologists Series. USA.
Close, T.J. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795-803.
Close, T.J. 1997. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291-296.
Close, T.J., Kortt, A.A., and Chandler, P.M. 1989. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13:95-108.
Cohen, A. and Bray, E.A. 1992. Nucleotide sequence of an ABA-induced tomato gene that is expressed in wilted vegetative organs and developing seeds. Plant Mol Biol 18:411-413.
Cohen, A., Plant A.L., Moses, M.S., and Bray E.A. 1991. Organ-specific and environmentally regulated expression of two abscisic acid-induced genes of tomato. Plant Physiol 97: 1367-1374.
Colmenero-Flores, J.M., Campos, F., Garciarrubio, A., and Covarrubias, A.A. 1997. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Plant Mol Biol 35:393-405.
Colmenero-Flores, J.M., Moreno, L.P., Smith, C.E., and Covarrubias, A.A. 1999. Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120:93-104.
Cuming, A.C. 1984. Developmental regulation of gene expression in wheat embryos. Molecular cloning of a DNA sequence encoding the early-methionine-labelled (Em) polypeptide. Eur J Biochem 145 :351-357.
Cuming, A.C. 1999. LEA proteins. In: Shewry PR, Casey R (eds) Seed Proteins. pp753-780. Kluwer Academic Publishers, Dordrecht, Netherlands.
Cuming, A.C. and Lane, B.G. 1979. Protein synthesis in imbibing wheat embryos. Eur J Biochem 99:217-224.
Curry, J. and Walker-Simmons, M.K. 1993. Unusual sequence of group 3 LEA (II) mRNA inducible by dehydration stress in wheat. Plant Mol Biol 21:907-912.
Curry, J., Morris, C.F., and Walker-Simmons, M.K. 1991. Sequence analysis of a cDNA encoding a group 3 LEA mRNA inducible by ABA or dehydration stress in wheat. Plant Mol Biol 16:1073-1076.
Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., and Sarhan, F. 1998. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623-638.
Ditzer, A., Kirch, H.H., Nair, A., and Bartels, D. 2001. Molecular characterization of two alanine-rich Lea genes abundantly expressed in the resurrection plant C. plantagineum in response to osmotic stress and ABA. J Plant Physiol 158:623-633.
Dong, J.Z. and Dunstan, D.I. 1997. Characterization of cDNAs representing five abscisic acid-responsive genes associated with somatic embryogenesis in Picea glauca, and their responses their responses to abscisic acid stereostructure. Planta 203:448-453.
Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751-763.
Dure III, L. 1993. A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363-369.
Dure III, L. 1993. Structural motifs in Lea proteins. In: Close TJ, Bray EA (eds) Plant Responses to Cellular Dehydration during Environmental Stress. Current Topics in Plant Physiology, vol. 10, pp. 91-103. American Society of Plant Physiologists Series. USA.
Dure III, L., Crouch, M., Harada, J., Ho, T.-H.D., Mundy, J., Quatrano, R.S., Thomas, T., and Sung, Z.R. 1989. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12: 475-486.
Dure III, L., Greenway, S.C., and Galau, G.A. 1981. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162-4168.
Duval, M., DeRose, R.T., Job, C., Faucher, D., Douce, R., and Job, D. 1994. The major biotinyl protein from Pisum sativum seeds covalently binds biotin at a novel site. Plant Mol Biol 26:265-273.
Eckardt, N.A., McHenry, L., and Guiltinan, M.J. 1998. Overexpression of deltaEmBP, a truncated dominant negative version of the wheat G-box binding protein EmBP-1, alters vegetative development in transgenic tobacco. Plant Mol Biol 38:539-549.
Eom, J.W., Baker, W.R., Kintanar, A., and Wurtele, E.S. 1996. The embryo-specific EMB-1 protein of Daucus carota is flexible and unstructured in solution. Plant Sci 115:17-24.
Espelund, M., De Bebout, J.A., Outlaw Jr., W.H., and Jacobsen, K.S. 1995. Environmental and hormonal regulation of barley late-embryogenesis-abundant (Lea) mRNAs is via different signal transduction pathways. Plant Cell Environ 18:943-949.
Espelund, M., Saeboe-Larssen, S., Hughes, D.W., Galau, G.A., Larsen, F., and Jakobsen, K.S. 1992. Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J 2:241-252.
Farrant, J.M., Pammenter, N.W., Berjak, P., Farnsworth, E.J., and Vertucci, C.W. 1996. Presence of dehydrin-like proteins and levels of abscisic acid in recalcitrant (desiccation sensitive) seeds may be related to habitat. Seed Sci Res 6:175-182.
Figueras, M., Pujal, J., Saleh, A., Save, R., Pages, M., and Goday, A. 2004. Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol 144:251-257.
Finch-Savage, W.E., Pramanik, S.K., and Bewley, J.D. 1994. The expression of dehydrin protein in desiccation-sensitive (recalcitrant) seeds of temperate trees. Planta 193:478-485.
Foster, R., Izawa, T., and Chua, N.-H. 1994. Plant bZIP proteins gather at ACGT elements. FASEB J 8:192-200.
Franz, G., Hatzopoulos, P., Jones, T.J., Krauss, M. and Sung. Z.-R. 1989. Molecular and genetic analysis of an embryonic gene, DC8, from Daucus carota L. Mol Gen Genet 218: 143-151.
Gal, T.Z., Glazer, I., and Koltai, H. 2004. An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577:21-26.
Galau, G.A. and Close, T.J. 1992. Sequences of the cotton group 2 LEA/RAB/dehydrin proteins encoded by Lea3 cDNAs. Plant Physiol 98:1523-1525.
Galau, G.A., Hughes, D.W., and Dure, L.III. 1986. Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol 7:155-170.
Galau, G.A., Wang, H.-Y.C., and Hughes, D.W. 1993. Cotton Lea5 and Lea14 encode atypical late embryogenesis-abundant proteins. Plant Physiol 101:695-696.
Galau, G.A., Wang, H.-Y.C., and Hughes, D.W. 1992. Cotton Lea4 (D19) and LeaA2 (D132) group 1 Lea genes encoding water stress-related proteins containing a 20-amino acid motif. Plant Physiol 99:783-788.
Garay-Arroyo, A. and Covarrubias, A.A. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15:879-892.
Garello, G., Barthe, P., Bonelli, M., Bianco-Trinchant, J., Bianco, J., and Page-Degivry, M.T. 2000. Abscisic acid-regulated responses of dormant and non-dormant embryos of Helianthus annuus: Role of ABA-inducible proteins. Plant Physiol and Biochem 38:473-482.
Gaubier, P., Raynal, M., Hull, G., Huestis, G.M., Grellet, F., Arenas, C., Pages, M., and Delseny, M. 1993. Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet 238:409-418.
Gilmour, S.J. and Thomashow, M.F. 1991. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol 17:1233-1240.
Gilmour, S.J., Artus, N.N., and Thomashow, M.F. 1992. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 18:13-21.
Gilmour, S.J., Fowler, S.G., and Thomashow, M.F. 2004. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767-781.
Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., and Thomashow, M.F. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433-442.
Goday, A., Jensen, A.B., Culianez-Macia, F.A., Mar, A.M., Figueras, M., Serratosa, J., Torrent, M., and Pages, M. 1994. The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351-360.
Goldberg, R.B., Barker, S.J., and Perez-Grau, L. 1989. Regulation of gene expression during plant embryogenesis. Cell 56:149-160.
Goupil, P., Hatzopoulos, P., Franz, G., Hempel, F.D., You, R., and Sung, Z.R. 1992. Transcriptional regulation of a seed-specific carrot gene, DC8. Plant Mol Biol 18:1049-1063.
Goyal, K., Tisi, L., Basran, A., Browne, J., Burnell, A., Zurdo, J., and Tunnacliffe, A. 2003. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278: 12977-12984.
Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M.H., Grunwald, D., and Macherel, D. 2005. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137:157-167.
Guiltinan, M.J., Marcotte Jr., W.R., and Quatrano, R.S. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267-271.
Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., and Zhang, J.-Z. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639-648.
Hara, M., Fujinaga, M., and Kuboi, T. 2004. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657-662.
Hara, M., Terashima, S., and Kuboi, T. 2001. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333-1339.
Hara, M., Terashima, S., Fukaya, T., and Kuboi, T. 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290-298.
Hara, M., Wakasugi, Y., Ikoma, Y., Yano, M., Ogawa, K., and Kuboi, T. 1999. cDNA sequence and expression of a cold-responsive gene in Citrus unshiu. Biosci Biotechnol Biochem 63:433-437.
Harada, J.J., DeLisle, A.J., Baden, C.S., and Crouch, M.L. 1989. Unusual sequence of an abscisic acid-inducible mRNA which accumulates late in Brassica napus seed development. Plant Mol Biol 12:395-401.
Harding, M.M., Anderberg, P.I., and Haymet, A.D. 2003. 'Antifreeze' glycoproteins from polar fish. Eur J Biochem 270:1381-1392.
Harding, M.M., Ward, L.G., and Haymet, A.D. 1999. Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition. Eur J Biochem 264:653-665.
Hellwege, E.M., Dietz, K.J., and Hartung, W. 1996. Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L. Planta 198:423-432.
Hobo, T., Asada, M., Kowyama, Y., and Hattori, T. 1999. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19:679-689.
Hong, B., Barg, R., and Ho, T.-H.D. 1992. Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol 18:663-674.
Hong, B., Uknes, S.J., and Ho, T.-H.D. 1988. Cloning and characterization of a cDNA encoding a mRNA rapidly-induced by ABA in barley aleurone layers. Plant Mol Biol 11:495-506.
Honjoh, K.I., Matsumoto, H., Shimizu, H., Ooyama, K., Tanaka, K., Oda, Y., Takata, R., Joh, T., Suga, K., Miyamoto, T., Iio, M., and Hatano, S. 2000. Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64:1656-1663.
Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S., and Sarhan, F. 1995. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8:583-593.
Houde, M., Danyluk, J., Laliberte, J.F., Rassart, E., Dhindsa, R.S., and Sarhan, F. 1992. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol 99:1381-1387.
Hsing, Y.-I.C., and Wu, S. 1992. Cloning and characterization of cDNA clones encoding soybean seed maturation polypeptides. Bot Bull Acad Sin 33: 191-199.
Hsing, Y.-I.C., Chen, Z.-Y., and Chow, T.-Y. 1992. Nucleotide sequences of a soybean complementary DNA encoding a 50-kilodalton late embryogenesis abundant protein. Plant Physiol 99:354-355.
Hsing, Y.-I.C., Chen, Z.-Y., Shih, M.-D., Hsieh, J.-S., and Chow, T.-Y. 1995. Unusual sequences of group 3 LEA mRNA inducible by maturation or drying in soybean seeds. Plant Mol Biol 29: 863-868.
Hsing, Y.-I.C., Rinne, R.W., Hepburn, A.G., and Zielinski, R.E. 1990. Expression of maturation-specific genes in soybean seeds. Crop Sci 30: 1343-1350.
Hsing, Y.-I.C., Tsou, C.-H., Hsu, T.-F., Chen, Z.-Y., Hsieh, K.-L., Hsieh, J.-S., and Chow, T.-Y. 1998. Tissue- and stage-specific expression of a soybean (Glycine max L.) seed-maturation, biotinylated protein. Plant Mol Biol 38: 491-490.
Hughes, D.W. and Galau, G.A. 1989. Temporally modular gene expression during cotyledon development. Genes Dev 3: 358-369.
Hughes, D.W. and Galau, G.A. 1991. Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell 3:605-618.
Hull, G.A., Bies, N., Twell, D., and Delseny, M. 1996. Analysis of the promoter of an abscisic acid responsive late embryogenesis abundant gene of Arabidopsis thaliana. Plant Sci 114:181-192.
Imai, R., Chang, L., Ohta, A., Bray, E.A., and Takagi, M. 1996. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243-248.
Ingram, J. and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377-403.
Ismail, A.M., Hall, A.E., and Close, T.J. 1997. Chilling tolerance during emergence of cowpea associated with a dehydrin and slow electrolyte leakage. Crop Sci 37:1270-1277.
Ismail, A.M., Hall, A.E., and Close, T.J. 1999a. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci USA 96:13566-13570.
Ismail, A.M., Hall, A.E., and Close, T.J. 1999b. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120: 237-244.
Iturriaga, G., Schneider, K., Salamini, F., and Bartels, D. 1992. Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20:555-558.
Izawa, T., Foster, R., and Chua, N.-H. 1993. Plant bZIP protein DNA binding specificity. J Mol Biol 230:1131-1144.
Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104-106.
Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C., and Pages, M. 1998. Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13:691-697.
Jia, Z. and Davies, P.L. 2002. Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101-106.
Jiang, C., Iu, B., and Singh, J. 1996. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol 30:679-684.
Joh, T., Honjoh, K., Yoshimoto, M., Funabashi, J., Miyamoto, T., and Hatano, S. 1995. Molecular cloning and expression of hardening-induced genes in Chlorella vulgaris C-27: the most abundant clone encodes a late embryogenesis abundant protein. Plant Cell Physiol 36: 85-93.
Johnson-Flanagan, A.M., Huiwen, Z., Geng, X.M., Brown, D.C.W., Nykiforuk, C.L., and Singh, J. 1992. Frost, abscisic acid, and desiccation hasten embryo development in Brassica napus. Plant Physiol 99:700-706.
Kahn, T.L., Fender, S.E., Bray, E.A., and O'Connell, M.A. 1993. Characterization of expression of drought- and abscisic acid-regulated tomato genes in the drought-resistant species Lycopersicon pennellii. Plant Physiol 103: 597-605.
Kang, J.-Y., Choi, H.-I., Im, M.-Y., and Kim, S.-Y. 2002. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343-357.
Kazuoka, T. and Oeda, K. 1994. Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant Cell Physiol 35:601-611.
Kendrew, J.C., Bodo, G., Dintzis ,H.M., Parrish ,R.G., Wyckoff, H., and Phillips, D.C. 1958. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662-666.
Kermode, A.R. 1997. Approaches to elucidate the basis of desiccation-tolerance in seeds. Seed Sci Res 7:75-95.
Kim, H.-S., Lee, J.-H., Kim, J.-J., Kim, C.-H., Jun, S.-S., and Hong, Y.-N. 2005. Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344:115-123.
Kim, S.-Y. and Thomas, T.L. 1998. A family of novel basic leucine zipper proteins binds to seed-specification elements in the carrot Dc3 gene promoter. J Plant Physiol 152:607-613.
Kim, S.-Y., Chung, H.-J., and Thomas, T.L. 1997. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237-1251.
Kiyosue, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1994. Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol 35:225-231.
Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Higashi, K., Satoh, S., Kamada, H., and Harada, H. 1992. Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Mol Biol 19:239-249.
Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Kamada, H., and Harada, H. 1993. cDNA cloning of ECP40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol Biol 21:1053-1068.
Koag, M.C., Fenton, R.D., Wilkens, S., and Close, T.J. 2003. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131: 309-316.
Kyte, J. and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105-132.
Lee, J.-T., Prasad, V., Yang, P.-T., Wu, J.-F., Ho, T.-H.D., Charng, Y.-Y., and Chan, M.-T. 2003. Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell and Environ 26:1181-1190.
Lee, P.-F., Hsing, Y.-I.C., and Chow, T.-Y. 2000. Promoter activity of a soybean gene encoding a seed maturation protein, GmPM9. Bot Bull Acad Sin 41:175-182.
Li, B. and Foley, M.E. 1995. Cloning and characterization of differentially expressed genes in imbibed dormant and afterripened Avena fatua embryos. Plant Mol Biol 29:823-831.
Lin, C. and Thomashow, M.F. 1992. DNA sequence analysis of a complementary DNA for cold-regulation Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol 99:519-525.
Lisse, T., Bartels, D., Kalbitzer, H.R., and Jaenicke, R. 1996. The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol Chem 377: 555-561.
Litts, J.C., Colwell, G.W., Chakerian, R.L., and Quatrano, R.S. 1987. The nucleotide sequence of a cDNA clone encoding the wheat Em protein. Nucleic Acids Res 15:3607-3618.
Litts, J.C., Erdman, M.B., Huang, N., Karrer, E.E., Noueiry, A., Quatrano, R.S., and Rodriguez, R.L. 1992. Nucleotide sequence of the rice (Oryza sativa) Em protein gene (Emp1). Plant Mol Biol 19:335-337.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-1406.
Maqbool, B., Zhong, H., El Maghraby, Y., Ahmad, A., Chai, B., Wang, W., Sabzikar, R., and Sticklen, B. 2002. Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. Theor Appl Genet 105:201-208.
Marcotte Jr., W.R., Bayley, C.C., and Quatrano, R.S. 1988. Regulation of a wheat promoter by abscisic acid in rice protoplasts. Nature 335:454-457.
Marcotte Jr., W.R., Russell, S.H., and Quatrano, R.S. 1989. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell 1:969-976.
Martin, J., Mayhew, M., Langer, T., and Hartl, F.U. 1993. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature 366:228-233.
Marttila, S., Tenhola, T., and Mikkonen, A. 1996. A barley (Hordeum vulgare L) LEA3 protein, HVA1, is abundant in protein storage vacuoles. Planta 199:602-611.
McCubbin, A.G., Kay, C.M., and Lane, B.G. 1985. Hydrodynamic and optical properties of the wheat germ Em protein. Can J Biochem Cell Biol 63:803-811.
Menkens, A.E., Schindler, U., and Cashmore, A.R. 1995. The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci 20:506-510.
Michel, D., Furini, A., Salamini, F., and Bartels, D. 1994. Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 24:549-560.
Michel, D., Salamini, F., Bartels, D., Dale, P., Baga, M., and Szalay, A. 1993. Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. Plant J 4:29-40.
Miyoshi, K., Nakata, E., Nagato, Y., and Hattori, T. 1999. Differential in situ expression of three ABA-regulated genes of rice, RAB16A, REG2 and OSBZ8, during seed development. Plant Cell Physiol 40:443-447.
Mogami, N., Shiota, H., and Tanaka, I. 2002. The identification of a pollen-specific LEA-like protein in Lilium longiflorum. Plant Cell Environ 25:653-663.
Moons, A., Bauw, G., Prinsen, E., Van Montagu, M., and Van der, S.D. 1995. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107:177-186.
Moons, A., De Keyser, A., and Van Montagu, M. 1997a. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191:197-204.
Moons, A., Prinsen, E., Bauw, G., and Van Montagu, M. 1997b. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243-2259.
Morris, P.C., Kumar, A., Bowles, D.J., and Cuming, A.C. 1990. Osmotic stress and abscisic acid induce expression of the wheat Em genes. Eur J Biochem 190:625-630.
Mundy, J. and Chua, N.-H. 1988. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7:2279-2286.
Mundy, J., Yamaguchi-Shinozaki, K., and Chua, N.-H. 1990. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87:1406-1410.
Narusaka, Y., Nakashima, K., Shinwari, Z.K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2003. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137-148.
NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P., and Sarhan, F. 2002. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129:1368-1381.
Neven, L.G., Haskell, D.W., Hofig, A., Li, Q.B., and Guy, C.L. 1993. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol 21:291-305.
Niogret, M.F., Culianez-Macia, F.A., Goday, A., Mar, A.M., and Pages, M. 1996. Expression and cellular localization of rab28 mRNA and Rab28 protein during maize embryogenesis. Plant J 9:549-557.
Niu, S., Antin, P.B., Morkin, E. 1996. Cloning and sequencing of a developmentally regulated avian mRNA containing the LEA motif found in plant seed proteins. Gene 175: 187-191.
Niu, X., Helentjaris, T., and Bate, N.J. 2002. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14:2565-2575.
Nylander, M., Svensson, J., Palva, E.T., and Welin, B.V. 2001. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45: 263-279 (2001).
Okubara, P.A., Williams, S.A., Doxsee, R.A., and Tobin, E.M. 1993. Analysis of genes negatively regulated by phytochrome action in Lemna gibba and identification of a promoter region required for phytochrome responsiveness. Plant Physiol 101:915-924.
Ono, A., Izawa, T., Chua, N.-H., and Shimamoto, K. 1996. The rab16B promoter of rice contains two distinct abscisic acid-responsive elements. Plant Physiol 112:483-491.
Parcy, F., Valon, C., Raynal, M., Gaubier-Comella, P., Delseny, M., Giraudat, J. 1994. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6: 1567-1582.
Park, S.H., Shalongo, W., and Stellwagen, E. 1997. The role of PII conformations in the calculation of peptide fractional helix content. Protein Sci 6:1694-1700.
Parra, M.M., del Pozo, O., Luna, R., Godoy, J.A., and Pintor-Toro, J.A. 1996. Structure of the dehydrin tas14 gene of tomato and its developmental and environmental regulation in transgenic tobacco. Plant Mol Biol 32:453-460.
Piatkowski, D., Schneider, H., Salamini, F., and Bartels, D. 1990. Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerance plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol 94:1682-1688.
Pla, M., Gomez, J., Goday, A., and Pages, M. 1991. Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants. Mol Gen Genet 230:394-400.
Plana, M., Itarte, E., Eritja, R., Goday, A., Pages, M., and Martinez, M.C. 1991. Phosphorylation of maize RAB-17 protein by casein kinase 2. J Biol Chem 266:22510-22514.
Prestrelski, S.J., Tedeschi, N., Arakawa, T., and Carpenter, J.F. 1993. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661-671.
Prieto-Dapena, P., Almoguera, C., Rojas, A., and Jordano, J. 1999. Seed-specific expression patterns and regulation by ABI3 of an unusual late embryogenesis-abundant gene in sunflower. Plant Mol Biol 39:615-627.
Raynal, M., Depigny, D., Cooke, R., and Delseny, M. 1989. Characterization of a radish nuclear gene expressed during late seed maturation. Plant Physiol 91:829-836.
Raynal, M., Guilleminot, J., Gueguen, C., Cooke, R., Delseny, M., and Gruber, V. 1999. Structure, organization and expression of two closely related novel Lea (late-embryogenesis-abundant) genes in Arabidopsis thaliana. Plant Mol Biol 40:153-165.
Ried, J.L. and Walker-Simmons, M.K. 1993. Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.). Plant Physiol 102:125-131.
Riera, M., Figueras, M., Lopez, C., Goday, A., and Pages, M. 2004. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci USA. 101:9879-9884.
Rinne, P., Welling, A., and Kaikuranta, P. 1998. Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an ABA-deficient genotype. Plant Cell Environ 21:601-611.
Rodrigo, M.J., Bockel, C., Blervacq, A.S., and Bartels, D. 2004. The novel gene CpEdi-9 from the resurrection plant C. plantagineum encodes a hydrophilic protein and is expressed in mature seeds as well as in response to dehydration in leaf phloem tissues. Planta 219:579-589.
Rosenberg, L.A. and Rinne, R.W. 1986. Moisture loss as a prerequisite for seedling growth in soybean seeds (Glycine max L. Merr.). J Exp Bot 37:1663-1674.
Rosenberg, L.A. and Rinne, R.W. 1987. Changes in seed constituents during germination and seedling growth of precociously matured soybean seeds (Glycine max). Ann Bot 60:705-712.
Rosenberg, L.A. and Rinne, R.W. 1989. Protein synthesis during rehydration, germination and seedling growth of naturally and precociously matured soybean seeds (Glycine max). Ann Bot 64:77-86.
Rost, B. and Sander, C. 1993. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232:584-599.
Rouse, D.T., Marotta, R., and Parish, R.W. 1996. Promoter and expression studies on an Arabidopsis thaliana dehydrin gene. FEBS Lett 381:252-256.
Russouw, P.S., Farrant, J., Brandt, W., and Lindsey, G.G. 1997. The most prevalent protein in a heat-treated extract of pea (Pisum sativum) embryos is an LEA group I protein; its conformation is not affected by exposure to high temperature. Seed Sci Res 7:117-123.
Russouw, P.S., Farrant, J., Brandt, W., Maeder, D., and Lindsey, G.G. 1995. Isolation and characterization of a heat-soluble protein from pea (Pisum sativum) embryos. Seed Sci Res 5:137-144.
Sanchez-Ballesta, M.T., Rodrigo, M.J., Lafuente, M.T., Granell, A., and Zacarias, L. 2004. Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950-1957.
Schulze-Lefert, P., Becker-Andre, M., Schulz, W., Hahlbrock, K., and Dangl, J.L. 1989. Functional architecture of the light-responsive chalcone synthase promoter from parsley. Plant Cell 1:707-714.
Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2003. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194-199.
Shen, Q. and Ho, T.-H.D. 1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295-307.
Shen, Q., Gomez-Cadenas, A., Zhang, P., Walker-Simmons, M.K., Sheen, J., and Ho, T.-H.D. 2001. Dissection of abscisic acid signal transduction pathways in barley aleurone layers. Plant Mol Biol 47:437-448.
Shen, Q., Uknes, S.J., and Ho, T.-H.D. 1993. Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J Biol Chem 268:23652-23660.
Shen, Q., Zhang, P., and Ho, T.-H.D. 1996. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107-1119.
Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410-417.
Sivamani, E., Bahieldinl, A, Wraith, J.M., Al Niemi, T., Dyer, W.E., Ho, T.-H.D., and Qu, R. 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1-9.
Skriver, K. and Mundy, J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503-512.
Skriver, K., Olsen, F.L., Rogers, J.C., and Mundy, J. 1991. Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA 88:7266-7270.
Smith-Espinoza, C.J., Richter, A., Salamini, F., and Bartels, D. 2003. Dissecting the response to dehydration and salt (NaCl) in the resurrection plant Craterostigma plantagineum. Plant Cell Environ 26:1307-1315.
Soulages, J.L., Kim, K., Arrese, E.L., Walters, C., and Cushman, J.C. 2003. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Plant Physiol 131: 963-975.
Soulages, J.L., Kim, K., Walters, C., and Cushman, J.C. 2002. Temperature-induced extended helix/random coil transitions in group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128: 822-832.
Sreerama, N. and Woody, R.W. 1999. Molecular dynamics simulations of polypeptide conformations in water: A comparison of , , and poly(pro)II conformations. Proteins 36:400-406.
Stapley, B.J. and Creamer, T.P. 1999. A survey of left-handed polyproline II helices. Protein Sci 8:587-595.
Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035-1040.
Swire-Clark, G.A. and Marcotte Jr., W.R. 1999. The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol 39:117-128.
Tamiya, T., Okahashi, N., Sakuma, R., Aoyama, T., Akahane, T., and Matsumoto, J.J. 1985. Freeze denaturation of enzymes and its prevention with additives. Cryobiology 22:446-456.
Tamminen, I., Makela, P., Heino, P., and Palva, E.T. 2001. Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J 25:1-8.
Thomann, E.B., Sollinger, J., White, C., and Rivin, C.J. 1992. Accumulation of group 3 late embryogenesis abundant proteins in Zea mays embryos. Plant Physiol 99:607-614.
Thomas, T.L. 1993. Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5:1401-1410.
Thomashow, M.F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571-599.
Thomashow, M.F. 2001. So what's new in the field of plant cold acclimation? Lots! Plant Physiol 125:89-93.
Thompson, E.W. and Lane, B.G. 1980. Relation of protein synthesis in imbibing wheat embryos to the cell-free translational capacities of bulk mRNA from dry and imbibing embryos. J Biol Chem 255:5965-5970.
Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481-2498.
Ukaji, N., Kuwabara, C., Takezawa, D., Arakawa, K., and Fujikawa, S. 2001. Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cells of mulberry tree was homologous to group 3 late-embryogenesis abundant proteins. Plant Physiol 126:1588-1597.
Ukaji, N., Kuwabara, C., Takezawa, D., Arakawa, K., Yoshida, S., and Fujikawa, S. 1999. Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol 120:481-490.
Ulrich, T.U., Wurtele, E.S., and Nikolau, B.J. 1990. Sequence of EMB-1, an mRNA accumulating specifically in embryos of carrot. Nucleic Acids Res 18:2826.
Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632-11637.
Vicient, C.M., Gruber, V., and Delseny, M. 2001. The Arabidopsis AtEm1 promoter is active in Brassica napus L. and is temporally and spatially regulated. J Exp Bot 52:1587-1591.
Vicient, C.M., Hull, G., Guilleminot, J., Devic, M., and Delseny, M. 2000. Differential expression of the Arabidopsis genes coding for Em-like proteins. J Exp Bot 51:1211-1220.
Vilardell, J., Goday, A., Freire, M.A., Torrent, M., Martinez, M.C., Torne, J.M., and Pages, M. 1990. Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol Biol 14:423-432.
Vilardell, J., Martinez-Zapater, J.M., Goday, A., Arenas, C., and Pages, M. 1994. Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants. Plant Mol Biol 24:561-569.
Villalobos, M.A., Bartels, D., and Iturriaga, G. 2004. Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol 135:309-324.
Wang, W., Vinocur, B., and Altman, A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14.
Welin, B.V., Olson, A., Nylander, M., and Palva, E.T. 1994. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol 26:131-144.
Wilde, H.D., Nelson, W.S., Booij, H., de Vries, S.C., and Thomas, T.L. 1988. Gene expression programs in embryogenic carrot cultures. Planta 174:205-211.
Williams, B. and Tsang, A. 1991. A maize gene expressed during embryogenesis is abscisic acid-inducible and highly conserved. Plant Mol Biol 16:919-923.
Williams, M.E., Foster, R., and Chua, N.-H. 1992. Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4:485-496.
Williamson, M.P. 1994. The structure and function of proline-rich regions in proteins. Biochem J 297:249-260.
Wise, M.J. 2002. The POPPs: clustering and searching using peptide probability profiles. Bioinformatics 18 Suppl 1: S38-S45.
Wise, M.J. 2003. LEAping to conclusions: A computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics. 4: 52-70.
Wise, M.J. and Tunnacliffe, A. 2004. POPP the question: what do LEA proteins do? Trends Plant Sci 9:13-17.
Wisniewski, M., Close, T.J., Artlip, T., and Arora, R. 1996. Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiol Plant 96:496-505.
Wolkers, W.F., McCready, S., Brandt, W.F., Lindsey, G.G., and Hoekstra, F.A. 2001. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544: 196-206.
Wolkers, W.F., van Kilsdonk, M.G., Hoekstra, F.A. 1998. Dehydration-induced conformational changes of poly-L-lysine as influenced by drying rate and carbohydrates. Biochim Biophys Acta 1425: 127-136.
Woody, R.W. 1992. Circular dichroism and conformation of unordered polypeptides. Adv Biophys Chem 2:37-79.
Wurtele, E.S., Wang, H., Durgerian, S., Nikolau, B.J., and Ulrich, T.H. 1993. Characterization of a gene that is expressed early in somatic embryogenesis of Daucus carota. Plant Physiol 102:303-312.
Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.-H.D., and Wu, R. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110: 249-257.
Yamaguchi-Shinozaki, K. and Shinozaki, K. 1993. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101:1119-1120.
Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251-264.
Yamaguchi-Shinozaki, K. and Shinozaki, K. 2005. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88-94.
Yamaguchi-Shinozaki, K., Mundy, J., and Chua, N.-H. 1990. Four tightly linked rab genes are differentially expressed in rice. Plant Mol Biol 14:29-39.
Yang, H.P., Saitou, T., Komeda, Y., Harada, H., and Kamada, H. 1996. Late embryogenesis abundant protein in Arabidopsis thaliana homologous to carrot ECP31. Physiol Plant 98:661-666.
Yeh, Y. and Feeney, R.E. 1996. Antifreeze Proteins: Structures and Mechanisms of Function. Chem Rev 96:601-618.
Zegzouti, H., Jones, B., Marty, C., Lelievre, J.M., Latche, A., Pech, J.C., and Bouzayen, M. 1997. ER5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol Biol 35:847-854.
Zhang, L., Ohta, A., Takagi, M., and Imai, R. 2000. Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem (Tokyo) 127:611-616.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top