|
1.Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldman AM, Francis GS, Ganiats TS, Goldstein S, Gregoratos G, Jessup ,ML, Noble RJ, Packer M, Silver MA, Stevenson LW, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Jacobs AK, Hiratzka LF, Russell RO and Smith SC. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. J Heart Lung Transplant. 21:189-203, 2002. 2.Jessup M and Brozena S. Heart failure. N Engl J Med. 348:2007-2018, 2003. 3.Towbin JA, Bowles NE. The failing heart. Nature (Lond). 415:227-233, 2002. 4.Katz AM. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med. 322:100-110, 1990. 5.Sen L, O’Neill M, Marsh JD, Smith TW. Inotropic and calcium kinetic effects of calcium channel agonist and antagonist in isolated cardiac myocytes from cardiomyopathic hamsters. Circ Res. 67:599-608, 1990. 6.Gillette PC, Garson A. Electrophysiological and pharmacologic characteristics of automatic ectopic atria tachycardia. Circulation. 56:571-575, 1977. 7.Gilmour RF, Zipes DP, Afterdepolarizartions, triggered rhythms and cardiac arrhythmias. In: Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters. edited by Morad M, Ebashi S, Trautwein W, Kurachi Y, London, Kluwer Academic Publishers, 1996, pp.333-342. 8.January CT, Riddle JM. Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res. 64:977-990, 1989. 9.Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogensis. Circ Res. 61:208-217, 2004. 10.Malfatto G, Rosen TS, Rosen MR. The response to overdrive pacing of triggered atria and ventricular arrhythmias in the canine heart. Circulation. 77:1139-1148, 1988. 11.Hiraoka M, Sawanobori T, Kawano S, HiranoY, Transient inward current and triggered activity. In: Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters. edited by Morad M, Ebashi S, Trautwein W, Kurachi Y, London, Kluwer Academic Publishers, 1996, pp.333-342. 12.Wit AL, Dillon SM, Coromilas J, Saltman AE, Waldecker B. Anisotropic reentry in the epicardial border zone of myocardial infarcts. Ann N Y Acad Sci. 591:86-108, 1990. 13.Beukelmann DJ, Nabauer M and Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation. 85:1046-1055, 1992. 14.Ikeda Y, Ross J. Models of dilated cardiomyopathy in the mouse and the hamster. Cur Opin Cardiol. 15:197-201, 2000. 15.Hongo M, Ryoke T, Ross J. Animal models of heart failure recent developments and perspectives. Trends Cardiovasc Med. 7:161-167, 1997. 16.Hatem SN, Sham JS, Morad M. Enhanced Na+-Ca2+ exchange activity in cardiomyopathic Syrian hamster. Circ Res . 74:253-261, 1994. 17.Kuo TH, Tsang W, Wiener J. Defective Ca2+-pumping ATPase of heart sarcolemma from cardiomyopathic hamster. Biochem Biophys Acta. 900:10-16, 1987. 18.Podrid PJ, Fogel RI, Fuchs TT. Ventricular arrhythmia in congestive heart failure. Am J Cardiol. 69:82G-96G, 1992. 19.Ikeda Y, Martone M, Gu Y, Hoshijima M, Thor A, Oh SS, Peterson KL, Ross J. Altered membrane proteins and permeability correlate with cardiac dysfunction in cardiomyopathic hamsters. Am J Physiol Heart Circ Physiol. 278:H1362-H1370, 2000. 20.Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-oka T, Hanaoka F. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, δ-sarcoglycan, in hamster: An animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA. 94:13873-13878, 1997. 21.Capasso JM, Sonnenblick EH, Anversa P. Chronic calcium channel blockade prevents the progression of myocardial contractile and electrical dysfunction in the cardiomyopathic Syrian hamster. Circ Res. 67:1381-1393, 1990. 22.Hano O, Mitsuoka T, Matsumoto Y, Ahmed R, Hirata M, Hirata T, Mori M, Yano K, Hashiba K. Arrhythmogenic properties of the ventricular myocardium in cardiomyopathic Syrian hamster, BIO 14.6 strain. Cardiovasc Res. 25:49-57, 1991. 23.Samson RA, Lee HC. Delayed afterdepolarizations and triggered arrhythmias in hypertrophic cardiomyopathic hearts. J Lab Clin Med. 124:242-248, 1994. 24.Tseng GN, Wit A. Characteristics of a transient inward current that causes delayed afterdepolarizations in atrial cells of the caine coronary sinus. J Mol Cell Cardiol. 19:1105-1119, 1987. 25.Spencer CI, Sham JSK. Effects of Na+/Ca2+ exchange induced by SR Ca2+ release on action potentials and afterdepolarzations in guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol. 285:H2552-H2562, 2003. 26.Kass RS, Tsien RW, Weingart R. Ionic basis of transient inward current induced by strophanthidin in cardiac purkinje fibres. J Physiol (Lond). 281:209-226, 1978. 27.Kass RS, Lederer WJ, Tsien RW, Weingart R. Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibers. J Physiol (Lond). 281: 187- 208, 1978. 28.Karagueuzian HS, Katzung BG. Voltage-clamp studies of transient inward current and mechanical oscillations induced by ouabain in ferret papillary muscle. J Physiol (Lond). 327:255-271, 1982. 29.Verkerk AO, Schumacher CA, van Ginneken AC, Veldkamp MW, Ravesloot JH. Role of Ca2+-activated Cl- current in ventricular action potentials of sheep during adrenoceptor stimulation. Exp Physiol. 86:151-159, 2001. 30.Wu SH, Chen YC, Higa S, Lin CI. Oscillatory transient inward current in ventricular myocytes of healthy versus myopathic Syrian hamster. Clin Exper Pharmacol Physiol. 31:668-676, 2004. 31.Koumi S, Backer CL, Arentzen CE. Characterization of inwardly rectifying K+ channel in human cardiac myocytes. Alterations in channel behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. Circulation. 92:164-174, 1995. 32.Cannel MB, Lederer WJ. The arrhymogenic current Iti in the absence of electrogenic sodium-calcium exchange in sheep cardiac purkinje fibres. J Physiol (Lond). 374:201-219, 1986. 33.Colquhoun D, Neher E, Reuter H, Stevens CF. Inward current channels activated by intracellular Ca2+ in cultured cardiac cells. Nature (Lond). 294:752-754, 1981. 34.Binah O, Cohen IS, Rosen MR. The effects of adriamycin on normal and ouabain-toxic canine Purkinje and ventricular muscle fibers. Circ Res. 53:655-662, 1983. 35.Lin CI, Kotake H, Vassalle M. On the mechanism underlying the oscillatory current in cardiac Purkinje fibers. J Cardiovasc Pharmacol. 8:906-914, 1986. 36.Ganong WF, Endocrine functions of the pancreas and regulation of carbohydrate metabolism. In:Review of Medical Physiology. 21st ed., edited by Ganong WF, New York, McGraw-Hill, 2003, pp.336-339. 37.Lee JC, Downing SE. Effects of insulin on cardiac muscle contraction and responsiveness to norepinephrine. Am J Physiol. 230:1360-1365, 1976. 38.Lamanna VR, Ferrier GR. Electrophysiological effects of insulin on normal and depressed cardiac tissues. Am J Physiol. 240:H636-H644, 1981. 39.Lewinski DV, Voβ K, Hülsmann S, Kögler H, Pieske B. Insulin-like growth factor-1 exerts Ca2+-dependent positive inotropic effects in failing human myocardium. Circ Res. 92:169-176, 2003. 40.Hsu CH, Lin CI, Loh YX, Chen YC, Wei J, Hu SY, Huang JH. (2004) Comparative effects of insulin and insulin-like growth factor-1 on dog ventricular muscles and rabbit cardiomyocytes. In: Advances in Electrocardiology. Proceedings 31st Intl Cong Electrocardiol, Kyoto, Japan, June 26-July 1, 2004. edited by Hiraoka M, Ogawa S, Kodama I, Inoue H, Kasanuki H, Katoh T, World Scientific, Singapore, 2004, pp.251-260. 41.Serose A, Prudhon B, Salmon A, Doyennette MA, Fiszman MY, Fromes Y. Administration of insulin-like growth factor-1 (IGF-1) improves both structure and function of delta-sarcoglycan deficient cardiac muscle in the hamster. Basic Res Cardiol. 100:161-170, 2005. 42.Loh SH, Lee AR, Huang WH and Lin CI. Ionic mechanisms responsible for the antiarrhythmic action of dehydroevodiamine in guinea-pig isolated cardiomyocytes. Brit J Pharmacol. 106:517-523, 1992. 43.Hwaong HR, Shen YF, Chen YC, Liu CP and Lin CI. Effects of cyclopiazonic acid on triggered activities in ventricular muscle and cardiomyocytes isolated from hamster hearts. Chinese J Physiol. 47:137-142, 2004. 44.Hunter EG. Adult ventricular myocytes isolated from CHF 146 and CHF 147 cardiomyopathic hamsters. Can J Physiol Pharmacol. 64:1503-1506, 1986. 45.Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved path-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391: 85-100, 1981. 46.Vassalle M, Lin CI. Calcium overload and cardiac function. J Biomed Sci. 11:542-565, 2004. 47.Regan TJ, Harman MA, Lehan PH, Burke WM, Oldewurtel HA. Ventricular arrhythmias and K+ transfer during myocardial ischemia and intervention with procaine amide, insulin, or glucose solution. J Clin Invest. 46:1657-1668, 1967. 48.Guyton AC, Hall JE: Intergration of renal mechanisms for control of blood volume; and renal regulation of potassium, calcium, phosphate, and magnesium. In: Textbook of Medical Physiology. 10th ed., edited by Guyton AC, Hall J, America, W.B. Saunders, 2000, pp329-345. 49.Lucchesi BR, Medina M, Kniffen F. The positive inotropic action of insulin in the canine heart. Eur J Pharmacol. 1972;18:107-115. 50.Rieker RP, Lee JC, Downing SE. Positive inotropic action of insulin on piglet heart. Yale J Biol Med. 48:353-360, 1975. 51.Sassine A, Bourgeois JM, Macabies J. Positive inotropic effect of insulin on rabbit auricle in vitro. Arch int Pharmacodyn. 218:196-201, 1975. 52.Sethi R, Barwinsky J, Beamish RE, Dhalla NS. Mechanism of the positive inotropic action of insulin. J Appl Cardiol. 6:199-208, 1991. 53.Schmidt HD, Koch M. Influence of perfusate calcium concentration on the inotropic insulin effect in isolated guinea pig and rat hearts. Basic Res Cardiol. 97:305-311, 2002.
|