(3.236.222.124) 您好!臺灣時間:2021/05/13 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許東男
研究生(外文):Tung-Nan Hsu
論文名稱:以逐格熱驅動的蔴糬網格追蹤演算法求解相變化問題PartII:具有自然對流的相變化
指導教授:詹益政詹益政引用關係
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:輪機工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:93
語文別:中文
中文關鍵詞:非結構有限體積追蹤方程式共軛梯度法熔化凝固相變化自然對流
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究討論乃應用非結構性有限體積數值方法來模擬具有自然對流的相變化過程。這個方法是建立在逐格熱驅動的蔴糬網格(mushy-cell)追蹤演算法,而此法推演,請參考詹益政博士投稿國外論文[7]。把整個分析區域用蔴糬區域(mushy zone)分成固體區域和液體區域。於固相區使用熱傳導方程式,於液相區使用熱傳導及Navier-Stokes方程式,並採用SIMPLE演算法以求出液相中的速度場。使用預處理共軛梯度家族法(preconditioned conjugate gradient family methods),例如P-CG 和 P-BiCGSTAB 方法來解決系統方程式。所提出的數值方法用錫(Tin)凝固和鎵(Gallium)熔化的問題來驗證結果並說明方法的可行性。把這些預測的數值與可用的實驗結果及其他人的數值結果相比較,這說明了本論文所提出的追蹤演算法可適用在具有自然對流的相變化。
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
符號說明 Ⅸ

第1章緒論 1
1.1研究動機 1
1.2文獻回顧 1
1.3本文架構 3
第2章 有限體積法及統御方程式 4
2.1有限體積法 4
2.2統御方程式 4
第3章 數值演算法 7
第4章 結果與分析 14
第5章 結論 17
參考文獻 18
表 21
圖 23
自述 39
1.Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase-change: application to the melting of a pure metal. Numerical Heat Transfer, 13: 297-318
2.Hannoun N, Alexiades V (2003) Mai TZ. Resolving the controversy over tin and Gallium melting in a rectangular cavity Heated from the side. Numerical Heat Transfer, part B, 44: p253-276
3.Viswanath R, Jaluria Y (1993) A comparision of different solution methodologies for melting and solidification problems. Numerical Heat Transfer Part B, 24: 77-105
4.Beckermann C, Viskanta R (1989) Effect of solid subcooling on nature convection melting of a pure metal. Journal of Heat Transfer– Transactions of the ASME, 111: 416-424
5.Mathur SR, Murthy JY (1997) A pressure-based method for unstructured meshes. Numerical Heat Transfer, part B, 31: 195-215
6.Ferziger JH, Peric M (1999) Computational methods for fluid dynamics. Springer, Germany
7.Kang S, Kim Y (2002) Pressure based unstructured grid finite volume method for simulating laminar reacting flows. Numerical Heat Transfer Part B, 41: 53-72
8.Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington
9.Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with training edge separation. AIAA Journal, 21: 1525-1532
10.Gau C, Viskanta R (1986) Melting and solidification of a pure metal on a vertical wall. Journal of Heat Transfer– Transactions of the ASME, 108: 174-181
11.Wolff F, Viskanta R (1988) Solidification of a pure metal at a vertical wall in the presence of liquid superheat. International Journal of Heat and Mass Transfer, 31: 1735-1744
12.Sampath R, Zabaras N (1999) An object-oriented implementation of a front tracking finite element method for directional solidification processes. International Journal for Numerical Methods in Engineering, 44: 1227-1265
13.Wintruff I, Giinther C, Class AG (2001) An interface-tracking control-volume finite-element method for melting and solidification problems- Part II: Verification and application. Numerical Heat Transfer, Part B, 39: 127-149
14.Li CY, Garimella SV, Simpson JF (2003) Fixed-grid front-tracking algorithm for solidification problems- Part II: Directional solidification with melting convection. Numerical Heat Transfer, part B, 43: 143-166
15.Raw WY, Lee SL (1991) Application of weighting function scheme on convection-conduction phase-change problem. Int. J. Heat Mass Transfer, 34: 1503-1513
16.Simpson JE, Garimella SV (1998) An investigation of solutal, thermal and flow fields in unidirectional alloy solidification. Int. J. Heat Mass Transfer, 41: 2485-2502
17.Desai CP, Vafai K (1993) A unified examination of the melting process within a two-dimensional rectangular cavity. Journal of Heat Transfer-Transactions of the ASME, 115: 1072-1075
18.Kim S, Anghaie S, Chen G (2000) A fixed-grid two-phase numerical model for convection-dominated melting and solidification. Trends in Numerical and Physical Modeling for Industrial Multiphase Flows, Institut d'Etudes Scientifiques de Carg se, France, Sep. 27-29
19.Jiang Y, Prezkwas AJ (1994) Implicit, pressure-based incompressible Navier-Stokes equations solver for unstructured meshes. AIAA-94-0305
20.Jan YJ (2005) A cell-by-cell thermally driven mushy-cell tracking algorithm for phase-change problem- Part I: Concept for tracking the moving front without natural convection. (Submitted to the Journal computational mechanics)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔