跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/29 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳采蓉
研究生(外文):Tsai-Jung WU
論文名稱:氧化鋅奈米粉末摻鈷之製備與物性探討
論文名稱(外文):Nano-sized Co doping ZnO magnetic semiconductors, fabrication and dielectric properties
指導教授:傅昭銘傅昭銘引用關係
指導教授(外文):Chao-Ming FU
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:中文
論文頁數:80
中文關鍵詞:稀磁性半導體自旋電子學阻抗頻譜
相關次數:
  • 被引用被引用:1
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
磁性的起源乃是由於原子中未成對的電子之自旋效應所產生,而在傳輸的機制中,自旋電子在元件中扮演了重要的角色。目前的電子元件,以矽和Ⅲ-Ⅴ族半導體為主,若將磁性原子摻混入Ⅲ-Ⅴ族半導體中,仍有磁性的表現,即為磁性半導體,同時具有磁性、半導體及光學性質,且具有以自旋性作為傳輸的電子元件之發展。
本研究乃是探討稀磁性半導體,鈷摻混氧化鋅奈米材料之高頻導電特性。實驗上,使用溶膠凝膠法製作氧化鋅粉體,再以真空熱處理方式摻混不同比例(x<0.05)的鈷與氧化鋅。本實驗注意到製備樣品必須以真空熱處理,才能表現出樣品之磁性,若在一大氣壓下進行熱處理所得之樣品,磁性並不明顯,所以熱處理的真空度會影響樣品在量測上的表現。
首先利用X光散射儀量測樣品之晶相,藉由Scherrer Equation 分析計算得到樣品之粒徑。繼而使用樣品震盪磁性量測儀進行磁滯迴路、矯頑磁力及飽和磁化量等量測。摻鈷之氧化鋅乃以介電性的氧化鋅為主體,所以本實驗進一步探討樣品之高頻阻抗及介電頻譜特性,並使用等效電路法對量測得的阻抗頻譜進行分析,探討樣品之介電遲豫、交流及導電度等物理特性。
This thesis is about manufacturing magnetic semiconductor material of Zn1-xCoxO by Solid-state sintering , and controlling the oxygen content in process. Diluted magnetic semiconductor( DMS), is the material which mixes very few transitional metal atoms, and can show magnetic property in semiconductor material. To increase the proposal in usage, diluted magnetic semiconductor is combined with semiconductor property and magnetic, as well as of electron spin and electron charge. It is a new and original semiconductor material.
In this thesis, we manufactured different proportional Zn1-xCoxO, and did several analysis of samples by X-ray diffraction(XRD), Vibrating Sample Magnetometer(VSM), and LCR meter. Besides, we also did analyze to its impedance spectra by using equivalent circuit analysis .The experimental result slows that the structural formation of Zn1-xCoxO is based on ZnO(wurzite). The magnetic properties, such as saturation magnetization, cociverty, etc, were measured by Vibrating Sample Measurement (VSM). The experimental M-H curve of the Zn1-xCoxO, for x<0.05, have demonstrated hysterisis behavior typical for ferromagnetism . The impedance and dielectric behaviors are also studied to explore the mechanisms underlying for high frequency transport properties essential to device applications. The equivalent circuit method composed of resistance and capacitance is ultrized to separate the microscopic dielectric relaxation.
This thesis reports the sol-gel method and solid state sintering method can manufacture nano sized sample of ZnO doped Co. Furthermore, the sample we synthesized are ferromagnetic. The results of the thesis also provided a base of spintronics device.
第一章 緒論
§1-1 氧化鋅之製備與基本知識之介紹----------------- 2
1-1-1 氧化鋅材料結構特性與應用---------------------- 2
1-1-2 奈米氧化鋅製備-------------------------------- 5
1-1-3 自旋電子學(Spintronics)---------------------- 9
1-1-4 稀磁性半導體---------------------------------- 11
§1-2 研究動機與目的-------------------------------- 14

第二章 理論基礎
§2-1 磁性理論-------------------------------------- 15
2-1-1 磁性來源-------------------------------------- 15
2-1-2 磁性質分類------------------------------------ 17
§2-2 溶膠凝膠法基本原理---------------------------- 20
§2-3 阻抗量測原理---------------------------------- 24
2-3-1 阻抗的基本介紹-------------------------------- 24
2-3-2 等效電路阻抗分析物質介電特性------------------ 25
2-3-3 介電遲豫現象---------------------------------- 27
第三章 實驗儀器與方法
§3-1 製備不同摻混濃度的氧化鋅摻鈷------------------ 31
§3-2 實驗儀器-------------------------------------- 34
3-2-1 X光散射儀------------------------------------ 34
3-2-2 樣品震盪磁性量測儀---------------------------- 36
3-2-3 高頻阻抗分析儀-------------------------------- 39
§3-3 量測方法-------------------------------------- 42

第四章 實驗結果與討論
§4-1 Zn1-xCoxO之粒徑分析--------------------------- 45
§4-2 Zn1-xCoxO之磁性分析--------------------------- 51
§4-3 Zn1-xCoxO之阻抗頻譜分析----------------------- 55
4-3-1 Zn1-xCoxO之阻抗頻譜特性----------------------- 56
4-3-2 Zn1-xCoxO導電率頻譜探討---------------------- 58
§4-4 Zn1-xCoxO之介電頻譜探討----------------------- 61
4-4-1 Zn1-xCoxO之介電常數------------------------- 62
4-4-2 Zn1-xCoxO之介電模組------------------------- 64
§4-5 阻抗頻譜之等效電路分析法---------------------- 65
第五章 結論------------------------------------------75
[1]“以化學法製備均一粒徑氧化鋅粉體與發光特性之研究”,碩士論文,陳秀連,國立台灣科技大學工程技術研究所,(2003)。
[2]“奈米薄膜技術與應用”,陳光華,五南出版社,(2005)。
[3]Kyeong Youl Jung, Yun Chan Kang, and Seung Bin Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis”, Journal of Materials Science Letters, 16, 1848-1849 (1997)
[4]Maurizio Castellano and Egon Matijevic, “Uniform colloidal zinc compounds of various morphologies”, Chem. of Mater., 1, 78-82 (1989).
[5]Takeshi Tsuchida and Seiko Kitajima, “Preparation of Uniform Oxide Particles by Homogeneous Precipitation from Zinc Sulfate and Nitrate Solutions”, Chem. Lett.,1769-1772 (1990).
[6]Kiichiro Kamata and Kikuo Miyokawa, “Synthesis of Zinc Oxide Powder by Hydrolysis of BIS(Acetylacetonato)-Zinc(Ⅱ) in Aqueous Solution”, Chemitry Letters, 2021-2022 (1984).
[7]Didier Jezequel, Jean Guenot, Noureddine Jouini, and Fernand Fievet, “Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics”, J. Mater. Res., 10[1], 77-83 (1995)
[8]Corrie L. Carnes, and Kenneth J. Klabunde, “Synthesis, Isolation, and Chemical Reactivity Studies of Nanocrystalline Zinc Oxide”, Langmuir 16, 3764-3772 (2000).
[9]Alba Chittofrati and Egon Matijevic, “Uniform particles of zinc oxide of different morphologies”, Colloids and Surface, 48, 65-78 (1990).
[10]O. Milosevic, and D. Uskokovic, “Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis”, Mater. Sci. and Eng., A128, 249-252 (1993).
[11]O. Milosevic, D. Uskokovic, L. J. Karanovic, M. Tomasevic-Canovic, and M. Trontelj, “Synthesis of ZnO-based varistor precursor powders by means of the reaction spray process”, J. of Mater. Sci., 28, 5211-5217 (1993).
[12]Hyeon-Jun Lee and Se Young Jeong, Chae Ryong Cho, Chul Hong Park,“Stduy of diluted magnetic semiconductor:Co-doped ZnO”,Appl. Phys. Lett., Vol. 81, No21, 18 November (2002).
[13]Pavle V. Radovanovic and Daniel R. Gamelin, “Hight-Temperatuer Ferromagnetism in Ni2+-doped ZnO Aggregates Prepared from Colloidal Diluted Magnetic Semiconductor Quantum Dots”,Physical Review Letters, Vol.91, No.15, October (2003).
[14]G. a. Prinz, Science 282, 1660 (1998)
[15]F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).
[16]H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
[17]H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. L. chang, and L. Esaki, Phys. Rev. Lett. 63, 1849 (1989).
[18]H. Akai, Phys. Rev. Lett. 81, 3002 (1998).
[19]H. Ohno, H. Munekata, T. Penneys S. von Molnar, and L. L. chang, Phys. Rev. Lett. 68, 2664 (1992).
[20]Dietl, T., Semicond. Sci. Technol. (2002) 17 (14), 377
[21]Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-Y. Koshihara, and H. Koinuma, Science 291, 854 (2001)
[22]S. A. Chambers et al., Appl. Phys. Lett. 79, 3467 (2001)
[23]Park, S.-J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K.; Hyeon, T.; J. Am. Chem. Soc. 122,8581, (2000)
[24]Puntes, A. F.; Krishnan, K. M.; Alivisatos, A. P. Science, 291, 2115, (2001)
[25]Sun, S.; Murray, C. B. J. Appl. Phys., 85, 4325, (1999)
[26]B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962).
[27]陳慧英, “溶膠凝膠法在薄膜製備上之應用”, 化工技術,第80期, 11月 (1999).
[28]S. Saha and S. B. Krupqnidhi, J. Appl. Phys. 87, 849(2000).
[29]F. A. Grant, J. Appl. Phys. 29,76(1957).
[30]M. W. Barsoum, "Fundamental of Ceramics" The McGraw-Hill
Companies, Inc. (1997)
[31]JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN V. 2.02. (1999)。
[32]“磁性技術手冊”,林耕華等編著。
[33]“奈米科技,馬遠榮著,商周出版社(2002)。”
[34]“奈米材料”,張立德編著,五南出版社(2002)。
[35]“Introduction to Solid State Physics,7th ed.”,Kittel(1997)
[36]“近代物理導論”,林財庫編著,藝軒圖書(2004)。
[37]Eun-Cheol Lee and K. J. Chang, “Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO”, PHYSICAL REVIEW B 69, 085205 (2004)
[38]Nicola A. Spaldin, “Search for ferromagnetism in transition-metal-doped piezoelectric ZnO”, PHYSICAL REVIEW B 69, 125201 (2004)
[39]A. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. McCready, D. Gaspar,M. H. Engelhard J. W. Rogers, Jr., K. Krishnan, D. R. Gamelin, and S. A. Chambers,“Epitaxial growth and properties of cobalt-doped ZnO on a-Al2O3 single-crystal substrates”, PHYSICAL REVIEW B 70, 054424 (2004)
[40]G. Lawes, A. S. Risbud, A. P. Ramirez, Ram Seshadri, “Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO”, PHYSICAL REVIEW B 71, 045201 (2005)
[41]Kevin R. Kittilstved, Nick S. Norberg, and Daniel R. Gamelin, “Chemical Manipulation of High-Tc Ferromagnetism in ZnO Diluted Magnetic Semiconductors”, PRL 94, 147209 (2005)
[42]S.Kolesnik, B. Dabrowski, and J. Mais,“Structural and Magnetic Properties of Transition Metal Substituted ZnO”, J. Appl. Phys., Vol.95, No.5, March (2004)
[43]A. S. Risbud, N. A. Spaldin, Z. Q. Chen, S. Stemmer, and Ram Seshadri, “Magnetism in Polycrystalline cobalt-Substituted Zinc Oxide”, PHYSICAL REVIEW B 68, 205202 (2003)
[44]Eric A. Meulenkamp, “Synthesis and Growth of ZnO Nanoparticles”, J. Phys. Chem. B 1998, 102,5566-5572.
[45]K. lp, R. M. Frazier, Y. W. Heo, D. P. Norton, C. R. Abernathy, and S. J. Pearton, “Ferromagnetism in Mn- and Co-Implanted ZnO Nanorods”, J. Vac. Sci. Technol. B21(4), Aug (2003).
[46]“奈米科技交響曲物理篇”,黃光照等合著,臺大出版中心(2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top