跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王淵智
研究生(外文):Iuan-Jyh Wang
論文名稱:多元表徵課程對國小四年級學童分數學習成效之實驗研究
論文名稱(外文):A Study on the effects of Multiple Representation Curriculum on Fraction Number Learning for Fourth Grade Children
指導教授:陳密桃陳密桃引用關係梁淑坤梁淑坤引用關係
指導教授(外文):Mi-Tao ChenShukkwan Susan Leung
學位類別:博士
校院名稱:國立高雄師範大學
系所名稱:教育學系
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:314
中文關鍵詞:多元表徵課程分數概念分數基模分數解題表現
外文關鍵詞:Multiple Representation Curriculum (MRC)Fraction conceptsFraction schemesProblem-solving performance on fractions
相關次數:
  • 被引用被引用:42
  • 點閱點閱:1401
  • 評分評分:
  • 下載下載:350
  • 收藏至我的研究室書目清單書目收藏:16
本研究以Behr等人提出之表徵互動系統模式為基礎,設計多元表徵分數課程進行教學實驗以探究其實施成效。所選用之樣本為高雄市市郊一所小學四年級的兩個班級,其中一班 27人為控制組,另一班31人為實驗組,合計58名。兩組學生在教學前施以前測,教學後接受後測,並於三週後接受延宕測驗,以瞭解實驗教學之立即效果及保留效果。實驗組學生並依前測成績排序,選出低、中、高分組各三名,接受教學前及教學後之訪談,以瞭解實驗組不同能力的學生之學習成效。本研究以多變量共變數分析進行量化資料之假設考驗,並利用質性研究的方法進行訪談內容的分析。本研究的主要研究發現如下:
分數多元表徵課程的設計具體可行。以認知心理學中的「表徵」
為基本架構的分數多元表徵課程,能夠引發學生積極參與學習。接受此課程的學童分在數解題表現上也有部分優於一般教材的成效出現。不論是立即效果或保留效果,實驗組在「分數合成與分解」分量表的解題表現均顯著的優於控制組,其他五個分量表的差異則未達統計上的顯著。
數概念發展方面,在分數詞概念的發展顯示出,接受實驗課程的個案,其對於分數詞的認知發展層次有明顯的提昇。其次,在分數的部分整體關係方面,個案在接受教學實驗後,對於分數部分整體關係的口語表徵有所進步,但書寫符號表徵則進步有限。最後,在等值分數概念的發展顯示,接受實驗課程的個案其等值分數概念並沒有明顯的進步。
分數基模發展方面,在等分割基模的發展進步相當明顯,個案
在接受教學實驗後對於「公平」及「耗盡」兩個分割原則能夠清楚掌握。其次,在分數迭代基模的發展上亦有明顯的進步,多數個案能利用真分數找到單位分數,進而迭代出假分數,但對於從假分數找到單位分數迭代出給定分數則仍有困難。至於在遞迴分割基模的發展,則顯示未有明顯的進步。
除上述之主要發現外,根據文獻和本研究之結果,對國小數學教
學、國民小學數學領域課程綱要編修單位及未來研究等三方面提出具
體建議。
A Study on the effects of Multiple Representation Curriculum on
Fraction Number Learning for Fourth Grade Children
Iuan-Jyh Wang
Abstract
The purpose of this study is to investigate effects of Multiple Representation Curriculum (MRC, based on the interactive model for using representational system proposed by Behr’s group) on fraction number learning for fourth grade children. A quasi-experimental design with pretest, posttest, delayed test and interview was adopted. Two fourth grade classes were selected from the suburbs of Kaohsiung City, with a class of 27 children as control group, and the other class of 31 as experimental group. Quantitative analyses included ANCOVA and MANOVA statistical methods for testing hypothesis. For qualitative analyses, 9 cases (three from each of high, medium, and low group) were conducted from experimental group by sorting their pretest scores and conducted interview with them, to evaluate their developments of fractional conceptions and schemes. The findings were as follows:
Development of MRC. It was feasible to apply representation theory of cognitive psychology in the elementary mathematics curriculum development, in order to enhance understanding of children’s fraction learning. In addition, there were only performances of fractional composition and decomposition subscale that were significantly higher than the control group on posttest and delayed tests.
Number Concepts. Children from control group or those who received MRC were performing better in fraction words. In addition, interviews results indicated that children from nine cases were more elaborative in concepts of fraction words and part-whole relation, when compared to prior experimental teaching. However, there was only limited development in equivalent fraction concepts.
Fraction Schemes. The developments of equi-partitioning and iterative fraction schemes of nine cases were facilitated after MRC instruction was applied. Children also understood principles on “fairness” and “exhaustion”. However, there was virtually no major development in recursive partitioning scheme.
Finally, the investigator gave recommendations for teaching, research and administration of curriculum standards.
目 次
第一章 緒論
第一節 研究背景與動機................1
第二節 研究目的...................5
第三節 名詞釋義...................6
第四節 研究範圍與限制................8

第二章 文獻探討
第一節 數學知識習得的理論基礎............11
第二節 分數概念發展階段的認知觀點..........35
第三節 分數教材呈現在小學數學課程的順序.......58
第四節 分數意義及相關研究..............68
第五節 分數多元表徵課程的設計理念與特色.......81

第三章 研究設計與實施
第一節 研究設計...................87
第二節 研究問題與研究假設..............91
第三節 研究對象...................94
第四節 課程的編製與實施...............96
第五節 研究工具...................103
第六節 研究程序...................114

第四章 研究結果的分析與討論
第一節 分數解題表現的立即效果之分析比較.......120
第二節 分數解題表現的保留效果之分析比較.......127
第三節 實驗組個案數概念之分析比較..........134
第四節 實驗組個案分數基模之分析比較.........180

第五章 主要發現、結論與建議
第一節 主要發現...................211
第二節 結論.....................222
第三節 建議.....................224

參考文獻
壹、中文資料.....................231
貳、西文資料.....................236

附錄
附錄1 訪談問題組..................246
附錄2 單位變化問題上課學習單............249
附錄3 單位量單元學生擬題作品........... 250
附錄4 分分看任意門(等分割)教學設計.........251
附錄5 分數問題測驗甲卷...............254
附錄6 分數問題測驗乙卷...............260
附錄7 分數問題測驗甲卷因素結構圖..........266
附錄8 分數問題測驗乙卷因素結構圖..........267
附錄9 低分組L1教學實驗前訪談............268
附錄10 低分組L1教學實驗後訪談............274
附錄11 中分組M1教學實驗前訪談............282
附錄12 中分組M1教學實驗後訪談............289
附錄13 高分組H1教學實驗前訪談............299
附錄14 高分組H1教學實驗後訪談............308
附錄15 實驗組學生教學後學習反思...........313

表 次
表2-1 座標圖表徵轉譯關係表.............20
表2-2 計數單位符號及圖像..............33
表2-3 基模類型比較表................55
表2-4 分數認知發展階段比較表............56
表2-5 教科書分數教學單元分析表...........65
表3-1 本研究之實驗設計...............88
表3-2 研究樣本人數統計表..............95
表3-3 訪談個案代號及基本資料............95
表3-4 分數多元表徵課程教學單元名稱及節數......98
表3-5 控制組教學節數、單元及活動內容........102
表3-6 分數問題測驗預試之項目分析摘要表.......106
表3-7 第二階段預試單參數估計摘要表.........107
表3-8 正式測驗雙向細目表..............108
表3-9 分數問題測驗多元計分規準...........109
表3-10 研究工具的信度係數..............110
表3-11 驗證性因素分析模式適配度評鑑表........111
表3-12 甲卷驗證性因素分析模式之基本適配度......112
表3-13 乙卷驗證性因素分析模式之基本適配度......112
表3-14 甲卷驗證性因素分析模式之整體適配度......113
表3-15 乙卷驗證性因素分析模式之整體適配度......114
表3-16 訪談記錄符號說明表..............119
表4-1 實驗組和控制組學生在「分數問題測驗」總量表及
分量表的前測、後測及延宕測驗得分之描述統計表.121
表4-2 實驗組與控制組學生在「分數問題測驗乙卷」總量
表之共變數分析Levene誤差變異同質性檢定....121
表4-3 實驗組與控制組學生在「分數問題測驗乙卷」總量
表之共變數分析摘要表.............122
表4-4 實驗組與控制組學生在「分數問題測驗乙卷」各
分量表上得分之單因子多變量共變數分析之Box共
變數矩陣同質性檢定..............123
表4-5 實驗組與控制組學生在「分數問題測驗乙卷」各
分量表得分之單因子多變量共變數分析之Levene誤
差變異同質性檢定................123
表4-6 實驗組與控制組學生在「分數問題測驗乙卷」各分
量表得分之單因子多變量共變數分析摘要表....124
表4-7 延宕測驗各分量表、前後測總分及瑞文氏測驗之積
差相關係數統計表...............128
表4-8 實驗組與控制組學生在「分數問題測驗甲卷」總量
表的共變數分析之Levene誤差變異同質性檢定...128
表4-9 實驗組與控制組學生在「分數問題測驗甲卷」總量
表之共變數分析摘要表.............129
表4-10 實驗組與控制組學生在「分數問題測驗甲卷」各分
量表得分的保留效果之單因子多變量共變數分析之
Levene誤差變異同質性檢定...........130
表4-11 實驗組與控制組學生在「分數問題測驗甲卷」各分
量表得分的保留效果之單因子多變量 共變數分析
之Box共變數矩陣同質性檢定...........130
表4-12 實驗組與控制組學生在「分數問題測驗甲卷」各分
量表得分的保留效果之單因子多變量共變數分析摘
要表.....................130
表4-13 教學前、後個案數概念變化比較表.........134
表4-14 教學後個案二階化聚所採行的策略.........150
表4-15 教學前、後個案基模發展比較表..........181


圖 次
圖2-1 表徵系統的互動模式...............22
圖2-2 說讀聽寫做五種表徵在學習分數之應用簡圖.....27
圖2-3 由外顯巢狀數到分數連結數的基模變化.......43
圖2-4 由外顯巢狀數列至分散性分割基模發展圖......49
圖2-5 九年一貫課程暫行綱要整數、分數及小數能力指標關
係圖......................62
圖3-1 單位量教材...................99
圖3-2 研究流程圖...................115
壹、中文資料
王淵智(2001)。國小數學低成就學童分數表徵研究:以五個個案為例。發表於2001年國
民中小學數學教育革新研討會。嘉義:國立嘉義大學十二月十三日。
王淵智、吳佳娟、賀天俊與許慈恩(2005)。分數E擊棒教學設計。取自:
http://www.fsps.kh.edu.tw/FS620/
王淵智與張獻中(2004)。國小五年級實施數學課程銜接教學歷程與成效之初探。發表於
2004年學習.行動.反思--高雄市國教輔導團2004教育論壇。高雄市:高雄市政府
教育局十月三日。
吳相儒(2001)。運用國小數學科「分數」教學模組實施診斷與補救教學之研究-以四年級
學童為例。國立嘉義大學國民教育研究所碩士論文,未出版。
吳宏毅(2002)。台灣北部地區國小低年級學童分數概念之研究。國立台北師範學院數理
教育研究所碩士論文,未出版。
吳裕益(1992)。傳統題目分析方法。八十一年度教學評量研習會參考資料。台灣省政府
教育廳主辦,國立台南師範學院承辦。
吳裕益(2004)。測驗分數的等化方法。國立高雄師範大學特殊教育學系上課講義,未出
版。
呂玉琴(1991)。國小學生的分數概念: vs. 。國民教育,31(11,12),10-21。
呂玉琴(1996)。國小教師的分數知識。台北師院學報,9,427-460。
李端明(1994)。「分數詞」之解題活動類型:一個國小四年級兒童之個案研究。國立
嘉義師範學院國民教育研究所碩士論文,未出版。
李曉莉(1998)。國小二年級兒童分數概念之研究。國立台中師範學院國民教育研究所碩
士論文,未出版。
林清山(1994)。心理與教育統計學。台北:東華書局。
林碧珍(1990)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院
學報,4,295-347。
南一出版社(2003)。數學教科書及教學指引(第五冊)。台南:南一出版社。
南一出版社(2004)。數學教科書及教學指引(第七冊)。台南:南一出版社。
南一出版社(2005)。數學教科書及教學指引(第六冊、第八冊、第十冊)。台南:南一出
版社。
洪碧霞(1992)。傳統測驗理論信度的意義、類型與求法。八十一年度教學評量研習會參
考資料。台灣省政府教育廳主辦,國立台南師範學院承辦。
康軒出版社(2004)。數學教科書及教學指引(2-9冊)。台北:康軒出版社。
教育部(2000)。國民中小學九年一貫課程暫行綱要。台北:教育部。
教育部(2003)。國民中小學九年一貫課程綱要。台北:教育部。
張日齊(2003)。由分數詞的評量看小學生分數概念的發展。國立中正大學心理學研究所
碩士論文,未出版。
張平東(2002)。國小數學教材教法新論。台北:五南。
張春興(1999)。教育心理學-三化取向的理論與實踐。台北:東華書局。
張婉華(2003)。由分數詞的評量看小學生分數概念的發展。國立中正大學心理學研究所
碩士論文,未出版。
張熙明(2004)。國小五年級學童分數表徵教學之研究。國立嘉義大學國民教育研究所碩
士論文,未出版。
梁淑坤(1994)。「擬題」的研究及其在課程的角色。國民小學數學科新課程概說(低年
級),152-167。台北:台灣省國民學校教師研習會。
郭生玉(1997)。心理與教育測驗。台北:精華書局。
郭生玉(1999)。心理與教育研究法。台北:精華書局。
陳正昌、程炳林、陳新豐與劉子鍵(2005)。多變量分析方法-統計軟體應用。台北:五
南。
陳竹村、林淑君與陳俊瑜(2001)。國小數學教材分析-分數的數概念與運算。台北:國立
教育研究院。
陳和貴(2002)。國小五年級學童分數概念學習表現及易犯錯誤類型之比較研究-以屏東縣
多元文化族群為例。國立屏東師範學院數理教育研究所碩士論文,未出版。
陳英豪與吳裕益(1994)。測驗與評量。高雄:復文。
陳瑞發(2003)。國小低年級學童分數概念之研究。國立台北師範學院數理教育研究所碩
士論文,未出版。
陳靜姿(1997)。國小四年級兒童等值分數瞭解之初探。國立台中師範學院國民教育研究
所碩士論文,未出版。
黃堅厚(1990)。瑞文氏黑白非文字推理測驗。台北:中國行為科學社。
黃馨緯(1995)。國小高年級學童分數數線表示法瞭解之研究。國立台中師範學院初等教
育研究所碩士論文,未出版。
甯自強(1993a)。單位量的變換(一)~正整數乘險法運思的啟蒙。教師之友,34(1),
27-34。
甯自強(1993b)。兩步驟問題。教師之友,34(2),45-49。
甯自強(1993c)。分數的啟蒙~量的子分割活動~。教師之友,34(3),45-51。
甯自強(1993d)。經驗、察覺及瞭解在課程中的意義:由根本建構主義的觀點來看。發表
於1993年國小數理科教育學術研討會。台東市:國立台東師範學院六月五日。
甯自強(1995)。五個區分對數與計算教材設計的影響。發表於1995年師院教授座談會。
板橋國民學校教師研習會,二月十六日。
甯自強(1997a)。量的子分割(二)~真分數的引入~。教師之友,38(4),33-39。
甯自強(1997b)。量的子分割(三)~等值分數的引入~。教師之友,38(5),36-
40。
甯自強(1998)。涂景翰的數概念。科學教育學刊,6(3),255-269。
曾靖雯(2003)。以表徵觀點看國小三年級分數教學之行動研究。國立台東大學教育研究
所碩士論文,未出版。
彭聃齡與張必隱(2000)。認知心理學。台北:東華書局。
游政雄(2002)。台灣北部地區國小中年級學童分數概念之研究。國立台北師範學院數理
教育研究所碩士論文,未出版。
湯錦雲(2002)。國小五年級學童分數概念與運算錯誤類型之研究。國立屏東師範學院
數理教育研究所碩士論文,未出版。
詹婉華(2003)。國小高年級學童分數概念之研究。國立台北師範學院數理教育研究所碩
士論文,未出版。
劉世能(2002)。台灣北部地區國小高年級學童分數概念之研究。國立台北師範學院數
理教育研究所碩士論文,未出版。
劉祥通(2004)。分數與比例問題解題分析-從數學提問教學的觀點。台北:師大書苑。
蔣治邦(1994)。由表徵觀點探討新教材數與計算活動的設計。國民小學數學科新課程概
說(低年級),60-76。台北:台灣省國民學校教師研習會。
蔣治邦(1997)。由表徵的觀點看格式的選擇。國民小學數學科新課程概說(中年級),
49-65。台北:台灣省國民學校教師研習會。
謝堅、蔣治邦、林昭珍與吳淑娟(2001)。國小數學教材分析-小數的數概念與運算。台
北:教育部台灣省國民學校教師研習會。
羅素貞(2002)。國小學童分數乘法問題之解題研究。國立政治大學教育研究所博士論
文,未出版。


貳、西文資料
Barton, M. L., & Heidema, C. (2002). Teaching reading in mathematics.
Alexandria, VA: ASCD.
Behr, M., Harel, G., Post, T., & Lesh, R. (1992). Rational number,
ratio and proportion. In D. Grouws (Ed.), Handbook of research on
mathematics teaching and learning, 296-333. NY: Macmillan.
Behr, M., Harel, G., Post, T., & Lesh, R. (1993). Rational numbers:
Toward a semantic analysis - emphasis on the operator construct.
In T. Carpenter, E. Fennema, & T. Romberg (Eds.), Rational
numbers: An Integration of Research, 13-47. NY: LEA.
Behr, M., Lesh, R., Post, T., & Silver E. (1983). Rational number
concepts. In R. Lesh & M. Landau (Eds.), Acquisition of
mathematics concepts and processes, 91-125. NY: Academic.
Behr, M., Wachsmuth, I., Post, T., & Lesh, R. (1984). Order and
equivalence of rational numbers: A clinical teaching experiment.
Journal for Research in Mathematics Education, 15(5), 323-341.
Bruner, J. S. (1966). Toward a theory of instruction. MA: Havard
University.
Cramer, K., & Post, T. (1995). Facilitating children's development of
rational number knowledge. In D. Owens, M. Reed, & G. Millsaps
(Eds.), Proceedings of the Seventeenth Annual Meeting of PME-NA,
377-382. Columbus, OH: PME.
Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction
learning by fourth- and fifth-grade students: A comparison of the
effects of using commercial curricula with the effects of using
the rational number project curriculum. Journal for Research in
Mathematics Education, 33(2), 111-144.
Davydov, V. V., & Tsvetkovich Z. H. (1991). On the objective origin
of the concept of fractions. Focus on Learning Problems in
Mathematics, 13(1), 13-64.
Dimitrov, D.M., & Rumrill, P. (2003). Pretest-posttest designs in
rehabilitation research. Work: A Journal of Prevention,
Assessment, & Rehabilitation, 20(2), 159-165.
Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The
role of implicit models in solvin verbal problems in
multiplication and division. Journal for Research in Mathematics
Education, 16, 3-17.
Hambleton, R. K., & Swaminathan, H. (1985). Item Response Theory:
Principles and applications. Boston: Kluwer?Nijhoff.
Hannula, M. S. (2003). Locating fraction on a number line.
Proceedings of the 27th Conference of the International Group for
the Psychology of Mathematics Education (PME-27), 3, 17-24.
Honolulu, Hawaii .
Hart, L. C. (1985). Factors impeding the formation of a useful
representation in mathematical problem solving. (ERIC Document
Reproduction Service No. ED254419)
Hunting, R. P. (1986). Rachel's schemes for constructing fraction
knowledge. Educational Studies in Mathematics, 17(1) , 49-66.
Hunting, R. P., Davis, G. E., & Pearn, C. A. (1997). The role of
whole number knowledge in rational number learning. Mathematics
Education Research Group of Australasia annual conference.
Auckland, New Zealand.
Janvier, C. (1987a). Translation processes in mathematics education.
In C. Janvier (Ed.), Problems of representation in the teaching
and learning of mathematics, 27-32. NY: LEA.
Janvier, C. (1987b). Representation and understanding: The notion of
function as an example. In C. Janvier (Ed.), Problems of
representation in the teaching and learning of mathematics, 67-
71. NY: LEA.
Kaput, J. J. (1987). Representation systems and mathematics. In C.
Janvier (Ed.), Problems of representfation in the teaching and
learning of mathematics, 19-26. NY: LEA.
Kieren, T. E. (1988). Personal knowledge of rational numbers: Its
intuitive and formal development. In J. Hiebert, & M. Behr
(Eds.), Number concepts and operations in the middle grades, 162-
181. Virginia: NCTM.
Lamon, S. J. (1996). The development of unitizing: Its role in
children's partitioning strategies. Journal for Research in
Mathematics Education, 27(2), 170-193.
LeFevre, P. (1984). Rational number learning and instruction from a
cognitive perspective. (ERIC Document Reproduction Service No.
ED 259947)
Lesh, R., Post, T., & Behr, M. (1987). Representation and
translations among representations in mathematics learning and
problem solving. In C. Janvier (Ed.), Problems of representation
in the teaching and learning of mathematics, 33-40. NY: LEA.
Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. In J.
Hiebert, & M. Behr (Eds.), Number concepts and operations in the
middle grades, 93-118. Virginia: NCTM.
Marcou, A., & Gagatsis, A. (2002). Representations and learning of
fractions. The Mathematics Education into the 21st Century
Project , Proceedings of the International Conference, 250-253.
Italy: Palermo.
Marshall, S. P. (1995). Schemas in problem solving. NY: Cambridge
University.
Millsaps, G. M., & Reed, M. K. (1998). Curricula for teaching about
fractions. ERIC Digest. (ERIC Document Reproduction Service No.
ED 433184)
Moss, J., & Case, R. (1999). Developing children's understanding of
the rational numbers: A new model and an experimental curriculum.
Journal for Research in Mathematics Education, 30(2), 122-147.
NAEP (2004). NAEP Question.2004年6月5日,取自
http://nces.ed.gov/nationsreportcard/itmrls/.
National Council of Teachers of Mathematics (2000). Principles and
standards for school mathematics. Reston, VA: Author.
Nelissen, J. M. C., & Tomic, W. (1998). Representation in mathematics
education. (ERIC Document Reproduction Service No. ED 428950)
Ning, T. C. (1992). Children's meanings of fractional number words.
Unpublished doctoral dissertation of the University of Georgia.
Olive, J. (1999). From fractions to rational numbers of
arithmetic: A reorganization hypothesis. Mathematical Thinking
and Learning, 1(4), 279-314.
Olive, J. (2001a). Children's number sequences: An explanation of
Steffe's constructs and an extrapolation to rational numbers of
arithmetic. The Mathematics Educator, 11(1), 4-9.
Olive, J. (2001b). Connecting partitioning and iterating: A path to
improper fractions. In M. van den Heuvel-Panhuizen (Ed.),
Proceedings of the 25th Conference of the International Group for
the Psychology of Mathematics Education (PME-25), 4, 1-8.
Utrecht, The Netherlands: Freudenthal Institute.
Olive, J. (2002). The construction of commensurate fractions. In A.
D. Cockburn, & E. Nardi (Eds.), Proceedings of the 26th
Conference of the International Group for the Psychology of
Mathematics Education (PME-26), 4, 1-8. Norwich, U.K.:
University of East Anglia.
Olive, J. (2003). Nathan's strategies for simplifying and adding
fraction in third grade. Proceedings of the 27th Conference of
the International Group for the Psychology of Mathematics
Education (PME-27), 3, 421-428. Honolulu, Hawaii.
Olive, J. (2004). Java Bar_5C program. Adopted from:
http://jwilson.coe.uga.edu/olive/welcome.html#Chinese_JavaBars.
2004/11/20.
Olive, J. & Steffe, L. P. (2002). The construction of an iterative
fractional scheme: The case of Joe. Journal of Mathematical
Behavior, 20, 413-437.
Paivio, A. (1991). Images in mind: The evolution of a theory. NY:
Harvester Wheatsheaf.
Piaget. J. (1952). The child's conception of number. London:
Routledge & Kegan Paul.
Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child's
conception of geometry. NY: Norton.
Pothier, Y. & Sawada, D. (1983). Partitioning: The emergence of
rational number ideas in young children. Journal for Research in
Mathematics Education, 14(4), 307-317.
Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., &
Peled, I. (1989). Conceptual bases of arithmetic error:The case
of decimal fractions. Journal for Research in Mathematics
Education, 20(1), 8-27.
Rowan, T. E., Payne, J. N., & Towsley, A. E. (1993). Implication of
NCTM's standards for teaching fractions and decimals. In T. E.
Rowan & L. J. Morrow (Eds.), Implementing the K-8 curriculum and
evaluation standards: Readings from the arithemetic teacher, 49-
52. Virginia: NCTM.
Saenz-Ludlow, A. (1994). Michael's fraction schemes. Journal for
Research in Mathematics Education, 25(1), 50-85.
Saenz-Ludlow, A. (1995). Ann's fraction schemes. Educational Studies
Mathematics, 28, 101-132.
Skemp, R. R. (1987). The psychology of learning mathematics. New
Jersey: LEA.
Smith III, J. P. (2002). The development of students' knowledge of
fractions and ratios. In B. Litwiller, & G. Bright (Eds.), Making
sense of fractions, ratios, and proportions, 3-28. VA: NCTM.
Solo, R. L. (1998). Cognitive psychology. Boston: Allyn and Bacon.
Steffe, L. P. (1988). Children's construction of number sequences and
multiplying schemes. In J. Hiebert, & M. Behr (Eds.), Number
concepts and operations in the middle grades, 119-140. NY:
Academic press.
Steffe, L. P. (1992). Schemes of action and operation involving
composite units. Learning and Individual Differences, 4(3), 259-
309.
Steffe, L. P. (1994). Children's multiplying schemes. In G. Harel, &
J. Confrey (Eds.), The development of multiplicative reasoning in
the learning of Mathematics, 3-40. Albany: State University of
New York.
Steffe, L. P. (2002). A new hypothesis concerning children's
fractional knowledge. Mathematical Behavior, 20, 267-307.
Steffe, L. P. (2004). On the construction of learning trajectories of
children: The case of commensurate fractions. Mathematical
Thinking and Learning, (6)2, 129-162.
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment
methodology: Underlying principles and essential elements. In A.
E. Kelly, & R. A. Lesh (Eds), Handbook of research design in
mathematics and science education, 267-306. NY: LEA.
Steffe, L. P., von Glasersfeld, E., Richards, J., & Cobb, P. (1983).
Children's counting types: Philosophy theory, and application.
NY: Praeger.
Stevens, J. (1992). Applied multivariate statistics for the social
sciences. Hillsdale, NJ: LEA.
Streefland, L. (1991). Fractions in realistic mathematics education:
A paradigm of developmental research. Boston: Kluwer Acacdmic.
Streefland, L. (1993). Fractions in realistic approach. In T. P.
Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers:
An integration of research, 289-325. NY: LEA.
Taber, S. B. (2001). Making connection among different
representations: The case of multiplication of fractions. (ERIC
Document Reproduction Service No. ED 454053)
Tzur, R. (1995). Interaction and children's fraction learning.
Unpublished doctoral dissertation of the University of Georgia.
Tzur, R. (1999). An integrated study of children's construction of
improper fractions and the teacher's role in promotion that
learning. Journal for Research in Mathematics Education, 30(4),
390-416.
Tzur, R. (2003). Teacher and students' joint production of a
reversible fraction conception. Proceedings of the 27th
Conference of the International Group for the Psychology of
Mathematics Education (PME-27), 4, 315-322. Honolulu, Hawaii .
von Glasersfeld, E. (1995). Radical constructivism: A way of knowing
and learning. Washington: The Falmer.
Watanabe, T. (1995). Coordinating of units and understanding of
simple fraction: case studies. Mathematics Education Research
Journal, 7(2), 160-175.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top