(3.238.173.209) 您好!臺灣時間:2021/05/16 21:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林原巧
研究生(外文):Yuan-Chiao Lin
論文名稱:開口式固床工應用於野溪整治之研究
論文名稱(外文):Applicability of Open-slot Groundsills in Torrent Control.
指導教授:吳嘉俊
指導教授(外文):C.-C. Wu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水土保持系
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:98
中文關鍵詞:野溪整治渠床床型床型阻力固床工型式床型歧異度指數達西阻力係數
外文關鍵詞:torrent controlbedformbedform frictiongroundsill patternsShannon Diversity IndexDarcy’ friction factor
相關次數:
  • 被引用被引用:9
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
自然野溪依上游流域的泥砂與水文特性,衍生自我調節與平衡的法則。然而,系列固床工的構築,將連續的水流流路切割成段,使原本貫通的生態廊道受到阻隔,並對濱水生態棲息地造成嚴重的衝擊。
本研究透過室內水工模型試驗,探討固床工不同開口型式時,對直線段河道整治後溪床床型變化的影響,並以SDI歧異度指數(Shannon Diversity Index)量化床型之高程變化,同時,利用達西阻力係數(Darcy’s friction factor)量化床型形狀糙度之變化。本研究之結果大致歸納出下列幾點結論:
(1)動床間床型變化隨水流型態、泥砂特性與固床工開口型式之改變而出現不同之變化。
(2)設置開口之固床工較傳統固床工提供較多樣床型的變化機制,使得SDI歧異度,由傳統式固床工的0.261,最高可提升至單開口固床工的2.093。
(3)水流匯流聚能現象隨固床工阻水比的降低而逐漸提昇,故傳統式固床工對淘刷坑深度的抑制效果較佳,且淘刷坑之最大淘刷深度約為單開口固床工的一半。
(4)當坡度較緩時,可選擇較低阻水比的開口式固床工配置,以增加水流束縮,提昇床型變化。
(5)坡度較陡時,應選擇高阻水比之多開口式固床工配置,以達到分散水流、抑制淘刷坑淘刷深度,並兼具維持生態廊道貫通與多樣床型的變化。
Natural streams often follow the principles of self-adjustment to balance the variations in geometry and hydrology of the watershed. Nevertheless, the construction of groundsills in series divides a stream into segments that dissects ecological corridor and affects wildlife habitats.
The objective of this research is to investigate the applicability of groundsill open slot patterns in creating diversified bedforms in a straight channel through series of flume experiments. Shannon Diversity Index was used to quantify the bedform diversity; whereas, Darcy’s friction factor was used to quantify the bedform frictional resistance. Preliminary results of this study can be summarized as the following:
(1)Variations in bedforms are the results of flow regime, sediment characteristics, and open-slot patterns of the groundsills.
(2)Multi-slot groundsills provide greater diversity in bedform than conventional groundsills, so that SDI increases from 0.261 for conventional groundsills to maximum 2.093 for single open-slot groundsills.
(3)The power of the stream increases as water block ratio of the open-slot groundsills decreases. Therefore, conventional groundsills that providing no concentration of inflow have better control in channel scour. The maximum scour depth that conventional groundsill creates reaches only half of that produced by single-slot groundsill.
(4)As the channel gradient is flat, low water-block-ratio groundsills;such as single- or double-slot groundsills, are preferable due to better flow concentration that creates diverse bedforms.
(5)As the channel gradient becomes steep, groundsills with high water-block-ratio; such as four-slot groundsills are the optimum choices. Because high water-block-ratio groundsills scatter the power of the stream which control the scour depth and maintain ecological corridor in the streams.
摘要.......................................I
ABSTRACT...................................III
誌謝........................................V
目錄........................................VI
圖目錄.......................................VIII
表目錄.......................................XI
照片目錄......................................XII
1、前言......................................1
2、文獻回顧...................................3
2.1床型機制及種類..............................3
2.2階段河床....................................6
2.3固床工......................................8
3、試驗設備、材料與方法..........................17
3.1試驗渠槽與模型製作............................19
3.2試驗床質粒徑..................................23
3.3試驗流量......................................25
3.4水深與床型高程量測、平均流速及阻力係數之計算......28
4、結果與討論....................................32
4.1不同阻水比對水流匯集之影響......................33
4.2不同開口型式固床工間之渠床變化...................34
4.2.1傳統式固床工.................................34
4.2.2單開口固床工.................................40
4.2.3雙開口固床工.................................48
4.2.4四開口固床工.................................55
4.3不同開口型式固床工間床型歧異度之變化..............61
4.4渠床阻力係數...................................75
5、結論與建議.....................................89
參考文獻.........................................91
附錄.............................................94
作者簡介..........................................98
中文部分:
1.水土保持技術規範(2000)行政院農業委員會,172~173頁。
2.毛壽彭(1987)水工模型試驗,中國土木水利工程學會編著, 14-7~14-57頁。
3.吳健民(1991)泥砂運移學,中國土木水利工程學會編著, 17-54~17-124頁。
4.吳嘉俊(2000)固床工間連續帶工間距之研究(三),89年度水土保持及集水區經營研究計畫成果彙編,69~98頁。
5.吳嘉俊,(2004),橫向構造物之改良對溪流水理特性影響探討,行政院農業委員會水土保持局,4-69~5-3頁。
6.易任、王如意(1999)應用水文學(上),國立編譯館,308~320頁。
7.林雲晛,(2002),固床工水理特性之研究,國立台灣大學生物環境系統工程學系碩士論文,74~82頁。
8.林孟龍、王鑫(2002)台灣的河流,遠足文化出版社,8~37頁。
9.林鎮洋、邱逸文,(2002),生態工法概論,國立台北科技大學水環境研究中心,99~127頁。
10.林瑞仁(2003)開口式帶工對整治後溪流蜿蜒促成可行性之研究,國立屏東科技大學水土保持系碩士論文,83~95頁。
11.施東隆(2003)野溪固床工生態工法之探討,泥岩自然生態工法研討會論文輯,55~86頁。
12.連惠邦(2000)防砂壩下游河床演變及其整流工程配置模式之研究(三),89年度水土保持及集水區經營研究計畫成果彙編,299~320頁。
13.連惠邦、曹文洪、胡春宏(2000)明渠水力學,高立圖書有限公司, 51~88頁。
14.莫海龍(1987)粗粒化現象及階梯狀河床之形成對推移質輸砂量影響之研究,國立中興大學水土保持系碩士論文,39~43頁。
15.張則安(1994)固床工間距之研究,國立中興大學水土保持系碩士論文,22~31頁。
16.郭昌樺(2002)固床工間距對河床穩定性影響之研究,國立中興大學水土保持系碩士論文,46~54頁。
17.黃政達(1995)由動床試驗探討固床工之間距,國立中興大學水土保持系碩士論文,66~72頁。
18.曾晴賢(2003)河溪生態工法應有的觀念與作法-從生態的角度思考,2003年生態工法人員培訓講習會論文輯,2-1~2-25頁。
19.錢寧(1984)河床演變學,科學出版社,53~90頁。
20.蕭慶章(2004)實用河川工程(下)-河川工程治理,財團法人成大水力海洋研究發展文教基金會,6-130~6-143頁。
英文書籍:
21.Hoffmans, G.J.C.M. and H.J. Verheij(1997)Scour manual, A.A.Balkema, Rotterdam, Brookfield:7~61.
22.Vischer, D.L. and W.H. Hager(1998)Dam Hydraulics, Wiley Series In Water Resources Engineering:172~177.
23.Whittaker, J.G.(1982)Sediment Transport in Gravel-bed Rivers,New York Publish:545~571.
學報文章:
24.Aberibigbe, J. and O. Rajaratnam(1998)Effect of sediment gradation on ersion by plane turbulent wall jets, Journal of Hydraulic Engineering. 124(10): 1034~1042.
25.Aberle, J. and G. M. Smart(2003)The influence of roughness structure on flow resistance on steep slopes, Journal of Hydraulic Research. 40(3): 259~265.
26.Biedenharn, D.S. and L.C. Hubbard (2001)Design considerations for siting grade control structures, US Army Corps of Engineers.(7): 31~37.
27.Chin, Ann(1989)Step pools in stream channels, The Journal of Geology. (106): 59~69.
28.Dietz, J.W.(1972)Ausbildung von langen pfeilern bei Schräganströmung am Beispiel der BAB-Mainbrücke Eddersheim, Mitteilungsblatt der BAW,(31): 79~94.
29.Gaudio, R., A. Marion, and V. Bovolin(2000)Morphological effects of bed sills in degrading rivers, Journal of Hydraulic Research. 38(2): 89~96.
30.Lenzi, M.A., A. Marion,and R. Gaudio(2002)Local scouring in low and high gradient streams at bed sills, Journal of Hydraulic Research. 40(6): 731~739.
31.Simons, D.B.(1965)Sedimentary structures generated by flow in alluvial channel, Am. Ass of Petroleum Geologists Special Publ.: 32~39.
32.Whittaker, J.G. and N.R. Jaeggi(1982)Origin of step-pool systems in mountion streams, Journal of Hydraulics Division.(6): 759~765.
33.Wu C.-C., C.-H. Hou, C.N. Chen, and C.-Y. Shih(2002)Determination of groundsills interval for stream training, Proceedings of the International Conference on Fluvial Hydraulics. 4(6): 1109~1116.
34.William, A. and Ellen Wohl (2003)Influence of step composition on step geometry and flow resistance in step-pool streams of the Washington Cascades, Water Resources Research. 39(2): 3-1~3-13.
35.Yang, C.-T.(1976) Minumum unit stream power and fluvial Hydraulics, Journal of Hydraulic Engineering. 102(7): 919~934.
日文文獻:
36.池 谷浩(1977)砂防流入工之計畫和實務,23頁。
37.福留脩文(2002)河川近自然工法概述,91年度「河川近自然工法技術訓練」課程講義,17~25頁。
38.蘆田和男、高橋 保、道上正規(馮金亭、焦恩澤譯)(1983)河流泥砂災害及其防治,水利電力出版社,255~285頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top