(3.236.122.9) 您好!臺灣時間:2021/05/09 05:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥文
研究生(外文):Yen-Wen Chen
論文名稱:無電鍍技術於生物晶片之應用
論文名稱(外文):Electroless plating and its application to Bio-Chips
指導教授:陳文照陳文照引用關係
指導教授(外文):Wen-Jauh Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:70
中文關鍵詞:無電鍍電鍍偵測電極生物晶片
外文關鍵詞:electrolesselectroplatingdetect electrodebio-chip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
微流體生醫分析晶片已廣泛地應用在生醫研究等相關領域,一般傳統的微流體生醫分析晶片必須藉助雷射誘導螢光分析技術與複雜之光學設備方可進行分析,並不符合實用化與普及化之要求,本研究使用電性量測晶片進行分析檢測,可以大大的減低其儀器設備成本,此系統可以快速的分析出離子,改善了以往傳統量測所需大型複雜儀器之缺點。

本研究以玻璃為基材,運用無電鍍(electroless)及電鍍(electroplating)技術結合微機電製程,設計製作出ㄧ生醫分析晶片。將偵測電極與微管道整合於單一晶片上,運用無電鍍技術沉積金屬薄膜於晶片上,使用電鍍法將其金屬層增厚而成為3D,作為量測晶片之電極。此製作方式之電力線所涵蓋之面積較一般平面電極大許多,因此會增加其偵測效能及敏感度,與以往微流體生醫分析晶片運用物理氣相蒸鍍法沉積金屬所製作出的電極相比,改善了薄膜電極量測面積及製作上高成本等問題。

實驗中之偵測為非接觸式偵測,由於不必接觸樣品,不會產生副反應,可改善以往電極直接接觸檢測物而產生高熱變化影響檢測效果,增加了量測的準確度。利用離子通過偵測電極區時觀察電容值之變化,可依離子速度不同將離子快速分析。運用無電鍍製程製作生物晶片不但可可適用於任何基材與形狀,且有著低成本,快速等優點。不但可以使晶片的效能提升,具有成本低廉與製程簡易等優點,也可達晶片量產化之理想。
Traditional microchip are performed using optical detection, utilizing either absorbance or laser–induced-fluorescence. However, these optical detection methods have some drawbacks. During the past few years, contactless conductivity detection has been presented as a valuable extension to optical detection technology. The current study reports a simple and reliable method of micro fabrication technology, electroplating, and electroless technology to fabricate an integrated capacitive detection microfluidic bio-chip. This bio-chip have become a firmly accepted separation analysis technique suitable for complex mixtures owing to its ability to provide extremely high separation efficiencies in relatively short time with small sample volume in low concentration.
A simple and low-cost electrical detection method using contactless electrode pair is developed. Electroless plating and electroplating copper film electrode used as the three dimension(3D) detection electrodes, that placed on the end of micro channel . This detection scheme measures the electrical properties of the sample plugs as they pass-by the detection area. The contactless electrode can avoid the reaction between electrode and samples. Improve the result of detection. The 3D electrode which fabricate by electroless and electroplating technology to increase the detection area .and Improve of the sensitive of detection
目錄
摘要------------------------------------------------------- I

Abstract---------------------------------------------------- II

誌謝------------------------------------------------------- III

目錄------------------------------------------------------- IV

表目錄----------------------------------------------------- VII

圖目錄----------------------------------------------------- VIII

第一章 緒論------------------------------------------------ 1
1.1前言--------------------------------------------------- 1
1.2微機電系統--------------------------------------------- 2
1.3研究動機與目的----------------------------------------- 2
1.4 論文架構---------------------------------------------- 3
第二章 文獻回顧與理論基礎---------------------------------- 4
2.1無電鍍製程發展----------------------------------------- 4
2.1.1 無電鍍特性----------------------------------------- 4
2.1.2 無電鍍銅鍍液之組成--------------------------------- 5
2.1.3 反應機制------------------------------------------- 6
2.2電鍍--------------------------------------------------- 8
2.2.1 電流密度------------------------------------------- 8
2.2.2電流效率-------------------------------------------- 8
2.3微電泳生物晶片----------------------------------------- 9
2.3.1 電泳及其發展史------------------------------------- 10
2.3.2 毛細管電泳技術概論--------------------------------- 11
2.3.3 毛細管電泳原理------------------------------------- 12
2.3.4 毛細管電泳檢測技術--------------------------------- 17
2.3.4.1紫外光/可見光吸收偵測法-------------------------- 18
2.3.4.2 螢光偵測法-------------------------------------- 19
2.3.4.3 質譜偵測法------------------------------------- 20
2.3.5 電化學檢測方法-------------------------------------- 20
2.3.5.1 電導度偵測法------------------------------------- 20
2.3.5.2 電位偵測法--------------------------------------- 21
2.3.5.3 安培偵測法--------------------------------------- 22
2.4 濺鍍原理---------------------------------------------- 22
2.4.1 射頻磁控濺鍍--------------------------------------- 23
2.4.2 反應磁控濺鍍--------------------------------------- 23
第三章 晶片製作及封裝-------------------------------------- 27
3.1 晶片設計---------------------------------------------- 27
3.2光罩製作----------------------------------------------- 27
3.3 晶片製作---------------------------------------------- 28
3.3.1 微流道之製程--------------------------------------- 28
3.3.1.1晶片清洗----------------------------------------- 29
3.3.1.2微影--------------------------------------------- 29
3.3.2 偵測電極之製作------------------------------------- 34
3.3.2.1 晶片清洗---------------------------------------- 34
3.3.2.2 金屬薄膜沉積------------------------------------ 34
3.3.2.2.1金屬濺度-------------------------------------- 34
3.3.2.2.2 無電鍍--------------------------------------- 35
3.3.2.2.3 電鍍金屬------------------------------------- 37
3.3.2.2.4 濺鍍防氧化層--------------------------------- 39
3.3.3 微影及金屬蝕刻------------------------------------- 39
3.3.4 鑽孔對位接合--------------------------------------- 39
3.3.5 晶片封裝------------------------------------------- 44
第四章 製程結果與討論-------------------------------------- 46
4.1晶片量測----------------------------------------------- 46
4.2 樣品分離模式------------------------------------------ 47
4.2.1 傳統十字型分離法----------------------------------- 47
4.2.2 雙L分離法------------------------------------------ 51
4.2.3 改良雙L分離法-------------------------------------- 55
4.3樣品量測----------------------------------------------- 58
第五章 結論與未來展望-------------------------------------- 63
5.1結論--------------------------------------------------- 63
5.2未來展望----------------------------------------------- 63
參考文獻--------------------------------------------------- 64
作者簡介--------------------------------------------------- 70
參考文獻
[1]Fu, L. M., Yang, R. J., Lin, C. H, Lee, G. B. and Pan, Y. J. (2004), “Electrokinetically-driven Micro Flow Cytometers with integrated Optical Waveguides for On line Cell/Particle Detection,Analytica Chimica” ACTA,507,163-169
[2]Wang, L. G., Kee, T. T.(2004), “The use of electroless copper seed in electrochemical deposited copper interconnect”, Thin Solid Films, 462–463, 275– 278.
[3]Zemann, A.J., Schnell, E., Volgger, D. and Bonn, G.K. (1998), “Contactless Conductivity Detection for Capillary Electrophoresis”, Anal. Chem. 70, 563-567.
[4]Fracassi, D., Silva, J. A., Lago, C. L (1998), “An OscillometricDetector for Capillary Electrophoresis” Anal.Chem, 70, 4339-4343.
[5]Lee, F., John, W. and Sons (1996), “Lab-on-a-Chip”, A Revolution in Instrumentation.
[6]Nagel, D. J. and Zaghloul, M. E. (2001), “Micro Technology: Mega Impact”, IEEE Circuit Devices Mag, pp. 14 - 25.
[7]行政院國家科學委員會(2003)“微機電系統技術與應用”,精密儀器發展中心。
[8]Yosi, S. D., Lopatin, S. (1999), “Integrated electroless metallization for ULSI” Electrochimica Acta 44 3639-3649
[9]Yosi, S. D., Inberg, A., Sverdlov, Y., Bogush, V., Moscovich, H., Freeman, A. (2003), “Electroless processes for micro- and nanoelectronics”, Electrochimica Acta 48, 2987-2996.
[10]逢板哲爾(1986),“化學反應製造金屬薄膜”,表面處理工業雜誌,3期,pp. 25-31。
[11]張中良(1996),“非導體表面之金屬化”,工業材料,112 期,pp. 86-92。
[12]神戶德藏著,莊萬發譯著(1989),“無電解鍍金”復漢出版社。
[13]Shu, J., Grandjean, B. P. A. and Kaliaguine, S. (1997) “Effect of Cu(OH) 2Electroless Copper Plating” Ind. Eng. Chem. Res, Vol. 36, pp.1632-1636.
[14]Hung, A. and Chen, K. M. (1989), “Mechanism of ypophosphite-Reduced Electroless Copper Plating” J. Electrochem. Soc., Vol. 136, pp. 72-77.
[15]Hung, A. and Ohno, I. (1990), “Electrochemical Study of Hypophosphite Reduced Electroless Copper Deposition” J. Electrochem. Soc., Vol. 137, pp. 918-923.
[16]王廷君、王英郎、陳科維、謝宗雍(2001),“簡介銅電鍍製程在深次微米的應用”,積體電路技術,9月號。
[17]Peter, L., Cziraki, A. and Pogany, L. (2001), “Microstructure and Gaint Magnetoresistance of Electrodeposited Co-Cu/Cu Muitilayers” J.Electrochem. Soc. Vol. 148, No.3, pp.C168-C176.
[18]Crow, D.R.著、黃進益譯(1988),“電化學的原理及應用四版”,高立圖書有限公司,台北。
[19]TothKadar, E., Becsei, T. and Peter, L. (2000), “Preparation and Magnetoresistance Characteristics of Electrodeposited Ni-Cu Alloys and Ni-Cu/Cu Muitilayers” J. Electrochem, Soc., Vol. 147, No.9, pp3311-3318.
[20]Sander, G. H. W. and Manz, A. (2000), “Chip-based Microsystem for Genomic and Proteomic Analysis Trends in Analytical Chemistry”, Vol. 19, pp.364-378.
[21]曾昭富(1994),“微幫浦整合於細胞性質量測晶片之設計製作及測試”,國立成功大學微機電系統工程研究所碩士論文,台南市。
[22]王少君 (2001),“微晶片電泳偵測技術”,CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) Vol. 59, No. 3, pp. 429~434
[23]張承桂等(1999),“生物化學儀器分析及技術”,p277,高等教育出版社,台北。`
[24]Hjerten, S.(1967), “Chromatogr.Rev”, 9, pp.122-219
[25]Virtanen, R. (1974), “Acta Polytech.” Scand., 123, pp.7-67.
[26]Jongenson, J.W. and Lukacs, K.D. (1981) “Zone Electrophoresis in Open-Tublar Glass Capillaries”, Anal. Chem, 53,pp.1298-1302.
[27]Jongenson, J.W., Lukacs, K.D. (1981) “Capillary Zone electrophoresis, Science” , 222, pp.226-229.
[28]Cohen, A., Karger, B. (1987), “High-Performance Sodium odecyl-Sulfate Poly acylamide-Gel Capillary Electrophoresis of Peptides and Proteins,” J. Chromatogr. , 397, pp.409-417.
[29]Harrison, D. J., Manz, A., Fan, Z., Ludi, H. and Widmer, H.M. (1992), “Capillary electrophoresis and sample injection systems integrated on a plannar glass chip”, Anal. Chem., 64, pp.1926-1932.
[30]Woolley, A. T., Lao, K., Glazer, A. N., Mathies, R. A. (1998), “Capillary Electrophoresis Chips with integrated Electrochemical Detection”, Anal. Chem., 70, pp.684-688.
[31]曾建凱(1990),“應用準分子雷射製造微晶片式電泳及其在DNA分離與偵側之研究”,國立成功大學工程科學系碩士論文,台南市。
[32]Grushka, E., Mccormick, R. M., Kirkland, J. J. (1989), “Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations”, Anal. Chem., 61, pp.241-246.
[33]Fort, F., Krivankova L., Bocek P. (1993) “Capillary Zone Electrophoresus”, VCH Verlagsgesellschaft mbh, Weinheim.
[34]Jorgenson, J. W. and Lukacs, K. D. (1981), “Electrophoresis in narrow-bore capillaries”, J. Chromatogr, 218, 209-216.
[35]Jorgenson, J. W. and Lukacs, K. D. (1981), “Zone electrophoresis in open–tubular glass capillaries , Anal. Chem., 53, 1298-1302.
[36]林雲漢(2003),“微電泳晶片之樣品預濃縮研究”,輔仁大學化學系碩士論文,台北。
[37]Guzman, N. A. and Majors, R. E. (2001) “New directions for concentration. sensitivity enhancement in CE and microchip”, LCGC Eurpe .
[38]Yeung, E. S., Wang, P., Li, W. and Giese, R. W. (1992), “Micellar Electrokinetic capillary Chromatography, 608, 73-77.
[39]Ye, S. M., Gao, S. J., Pan Y. (2005), “Automatic separation system for marine meiobenthos based on laser-induced fluorescence technology”, Journal of Zhejiang University Science.
[40]Tamura, M., Luque, J., Harrington, J. E. Berg, P. A., Smith, G. P., Jeffries, J. P. and Crosley, D. R. (1998), “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer”, Appl. Phys. B 66, 503–510.
[41]Heinz, E., Jasna, P. K., Michael K. and Bernd S. (1991), “The use of fast atom bombardment and laserdesorption mass spectrometry in the analysis of complex carbohydrates”, Pure and Appl. Chem, Vol. 63, No. 4, pp. 491-498.
[42]
Boone, C. M., Pergantis, S. A., Heerma, W. (1997), “Investigation of Beam-induced Reactions Occurring Under Fast-atom Bombardment Conditions Between Triethanolamine and Various Phospholipids”, rapid communications in mass spectrometry, VOL. 11, 1205–1211.
[43]Nohara, D. (2005),“ Determination of micelle mass by electrospray ionization mass spectrometry”, Journal of mass spectrometry, 40, 489-493.
[44]Waterai, H., Matsumoto, A. and Fukumoto, T. (2002), “Direct Electrospray Ionization Mass Spectroscopic Measurement of Micro-Flow Oil/Water System” Aanlytical sciences March , vol. 18.
[45]Zhao, X. and Sun, Y. (2003), “Analysis of Paeoniae Radix by High-Performance Liquid Chromatography–Electrospray Ionization–Mass Spectrometry”, Aanlytical sciences September vol. 19.
[46]Takayanagi, T. (2004), “Analysis of Ion-Association Reaction in Aqueous Solution andIts Utilization by Capillary Zone Electrophoresis”, Aanlytical sciences Feburary vol. 20.
[47]Li, Y. H., Xing, C. X., and Yang L. L. (2005), “Determination of Trace Sodium in the Water-Steam System of Power Plants Using an FIA/ISE Method with an Automatic Penetration and Alkalization Apparatus”, Aanlytical sciences March vol. 21.
[48]Shansipur, M., Ganjali, M. R., and Ahmad R. (2001), “Lead-Selective Membrane Potentiometric Sensor Based on an 18-Membered Thiacrown Derivative”, Aanlytical sciences August , vol. 17.
[49]Wen, M. L., Zhao, Y. B., Chen, X., and Wang, C.Y. (1998), “A Methylene Blue-Selective Membrane Electrode Using Methylene Blue-Phosphotungstate as Electroactive Material and its Pharmaceutical Applications”, CCACAA 71 (3) 757-764.
[55]Wallingford, R. A. and Ewing, A. G. (1987), “Capillary Zone Electrophoresis with Electrochemical Detection” Anal. Chem., 59, 1762-1766.
[50]Wolley, A. T., Lao, K. and Mathies, R. A. (1994), “Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists”, Proc.Natl. Acad. Sci., 91, 11348-11352.
[51]黃琇澤(2003),“以反應濺鍍法製備氧化鋅薄膜與摻雜鋁之研究”,國立中山大學材料科學與工程研究所碩士論文,高雄市。
[52]張勁燕(2002),電子材料二版,五南圖書出版股份有限公司,台北。 。
[53]Chiem, N., Shultz,L. L., Andersson, P., Skinner,C. and Harrison,D.J. (2000), “Room temperature bonding of micromachined glass devices for capillary electrophoresis”, Sensors and Actuators B 63, pp147–152
[54]Briand, D., Weber, P., Nicolaas, F. and Rooij, D. (2004), “Bonding properties of metals anodically bonded to glass”, Sensors and Actuators A 114, pp543–549.
[55]Satoh, A. (1999), “Water glass bonding”, Sensors and Actuators, A72, pp160–168.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔