跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/10 00:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家瑋
研究生(外文):Chia-wei Liu
論文名稱:物體受爆震波衝擊現象分析
論文名稱(外文):Analysis of Impact Phenomena of Blast Wave Over Bodies
指導教授:戴昌賢戴昌賢引用關係
指導教授(外文):Chang-hsien Tai
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:55
中文關鍵詞:計算流體力學爆震波防爆掩體輪型裝甲車
外文關鍵詞:CFDBlast waveBomb sheltersWheeled armored vehicle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:1
超音速的傳導的爆震波具有嚴重殺傷性,且其移動過程與障礙物產生之反射現象及與其他震波發生之交互作用影響非常複雜,本研究主要透過數值模擬方式,了解爆炸波的行為。計算上,利用有限體積法解算三維相關非黏性流的Euler方程式與暫態流場。並使用多區塊格點系統與通量計算模式的方法,研究震波傳輸複雜的現象。在模擬複雜的震波傳遞問題,以上風TVD (Total Variation Diminishing)數值法解無黏性Euler方程組。採用人工耗散項最小的Roe’s Solver,配合Kappa高階MUSCL (monotone upwind-centered schemes for conservation laws) Scheme解決在空間通量計算方面的問題;而在時間離散方面,則採用具二階精度的Hancock法則進行時間積分。這模擬的結果可以預測出爆炸波對防爆掩體壁面衝擊和通過隧道的特性行為,研究發現了在封閉式與開放式的掩體中之流場結構、壓力分佈和和震波/震波、震波/渦流相互影響的複雜現象。另一研究主題爆震波對輪型裝甲車之影響,輪型裝甲車輛於戰場任務以人員、武器、裝備運輸為主,其高速機動能力可為陸地戰場戰術運用之主要工具,於炸彈爆炸時,直接受到砲彈碎片及爆震波之衝擊損害,本研究亦採用數值模擬方式研究於輪型裝甲車附近不穩定爆炸產生爆震波交互作用之狀況,研究目標鎖定於輪型裝甲車於爆震波傳導、反射、交互作用之影響,尤其是車前及底盤。最後複雜流場結構及分析所得之
結果係屬合理。
The leading edge of a blast wave is in the form of a shock wave which propagates at supersonic speed and is capable of causing severe damage. This study investigates the behavior of blast waves by employing the finite volume method to solve the associated three-dimensional, time-dependent, inviscous flow Euler equations. The complex transitional shock phenomena are investigated by means of a multi-block mesh system and a flux computational model. In simulating the complex shock propagation problem, the Total Variation Diminishing (TVD) upwind method is applied to solve the Euler equations. Spatial discretization is performed using Roe’s solver with high-order Kappa Monotone Upwind-centered Schemes for Conservation Laws (MUSCL) interpolation. Time integration is achieved via the second-order explicit Hancock method. The simulation results enable the prediction of the blast wave behavior as it impacts against the wall of a bomb shelter and travels through its smooth tunnel Specifically, this study identifies the complex phenomena of flow structures, pressure distributions, and shock-shock and shock-vortex interactions for closed-ended and open-ended bomb shelters. The numerical results are shown in good agreement with the experimental results obtained from shock tube flow studies. Meanwhile, a wheeled armored vehicle case is simulated in this study. Wheeled armored vehicles are used for transportation of combat crew, weapon systems and facilities in the battlefields. The highly mobility is also the primary requirement under the tactical deployment missions. The fragments and blast waves generated by an explosion of a bomb would damage the vehicle and crew. In this study, numerical investigation about the interaction of a blast wave in an unsteady explosion with a wheeled armored vehicle is presented. The objective of this paper aims at the study of blasting wave propagation, reflection and interaction with vehicle, especially those around the front and chassis regions. The result of complex flow structure and analysis of pressure distribution are presented in this work.
目錄
摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅴ
目錄 Ⅵ
圖目錄 Ⅸ
符號說明 VI

第1章 前言 1
1.1. 基本流場描述. 1
1.1.1 震波與爆震波流場特性 2
1.1.2 衝擊波效應與超壓(Overpressure)、動壓(pressure)的特性 3
1.2. 文獻回顧 3
1.3 研究內容 5
第2章 數學模式 7
2.1. 統御方程式 7
2.2. 無因次化處理 8
第3章 數值方法 10
3.1. 有限體積法 10
3.2. 空間離散與通量計算 11

3.3. 時間離散 14
第4章 網格系統與邊界條件之處理 19
4.1. 網格系統 19
4.2. 邊界條件之處理 22
4.2.1 邊界條件之定義 22
4.2.2 物體壁面邊界處理 23
4.2.3 遠處邊界條件 24
4.2.4 網格區塊交接邊界條件 24
4.2.5 對稱流場之邊界條件 25
4.2.6 面對稱之流場邊界條件 25
第5章 結果與討論 26
5.1 程式驗證 26
5.1.1 震波管近場流場 26
5.1.2 量測點之超高壓力比較 28
5.2 爆震波衝擊物件流場現象分析 30
5.2.1 爆震波對防爆掩體的衝擊 30
5.2.1.1 案例1 封閉式的防爆掩體 31
5.2.1.1.1 流場結構現象 31
5.2.1.1.2 防爆掩體牆角的流場現象 33
5.2.1.2 案例2 開放式的防爆掩體 34
5.2.1.2.1 發展的流場結構 34
5.2.1.2.2 掩體隧道內之壓力-時間軌跡分佈 37
5.2.1.3 案例之間的比較 39
5.2.2 爆震波對六輪裝甲車的衝擊 40
5.2.2.1 爆震波暫態傳遞和影響 40
5.2.2.2 裝甲車周圍壓力時間圖 44
第6章 結論與建議 48
參考文獻 50
作者簡介 55
1. Federation of American Scientists, “DoD 101 - An Introduction to the Military, General Purpose Bombs,” Updated Thursday, February 05, 1998. (http://www.fas.org/man/dod-101/sys/dumb/gp.htm)
2. Tang, M. J. and Baker, Q. A., “A New Set of Blast Curves from Vapor Cloud Explosion,” Process Safety Progress, Vol. 18, No. 3 (Winter 1999), pp.235-240.
3. Aizik, F., Ben-Dor, G., Elperin, T. and Igra, O., “General Attenuation Laws for Spherical Shock Waves in Pure and Dusty Gases,” AIAA Journal, Vol.38, No. 5 (May 2001), pp.969-971.
4. Igra, O., Hu, G., Falcovitz, J. and Heilig, W., “Blast Wave Reflection From Wedges,” Journal of Fluids Engineering, Vol. 125 (May 2003), pp.510-519.
5. Mazarak, O., Martins, C. and Amanatides, J., “Animating Exploding Objects,” Graphics Interface 99 (1999), pp.211-218.
6. Yngve, G. D., O’Brien, J. F. and Hodgins, J. K., “Animating Explosions,” Proceedings of SIGGRAPH 2000 (August 2000), pp.29-36.
7. Ben-Dor, G., “Shock wave Reflections Phenomena,” Springer- Verlag, New York, N.Y. (1991).
8. Ben-Dor, G., Igra, O. and Wang, L., “Shock wave Reflections in Dust-Gas Suspensions,” Journal of Fluids Engineering, Vol. 123 (March 2001), pp.145-153.
9. Kim, Y. S. and Lee, D. J., “Computation of Shock-Sound Inter- action Using Finite Volume Essentially Nonoscillatory Scheme,” AIAA Journal, Vol.40, No. 6 (June2003), pp.1239-1240.
10. Liang, S. M., Hsu, J. L. and Wang, J. S., “Numerical Study of Cylindrical Blast-Wave Propagation and Reflection,” AIAA Journal, Vol.40, No. 6 (June 2001), pp.1152-1158.
11. Liang, S. M. and Lo, C. P., “Shock/Vortex Interactions Induced by Blast Waves,” AIAA Journal, Vol.41, No. 7 (July 2003), pp.1341-1346.
12. Sylvie, B. G., Coulombel, J. F. and Aubert, S., “Boundary Conditions for Euler Equations,” AIAA Journal, Vol.41, No. 11 (January 2003), pp.56-63.
13. Omang, M., Borve, S. and Trulsen, J., “Numerical Simulation of Shock-Vortex Interactions Using Regularized Smoothed Particle Hydrodynamics,” Computational Fluid Dynamics Journal, 12(2):32 (July 2003), pp.1~9.
14. Krajnovic, S. and Davidson, L., “Numerical Study of the Flow Around a Bus-Shaped Body,” Transactions of the ASME, Vol. 125 (May 2003), pp.500-509.
15. Grasso, F., Marini, M., Ranuzzi, G., Cuttica, S. and Chanetz, B., “Shock-Wave/Turbulent Boundary-Layer Interactions in Nonequilibrium flows,” AIAA Journal, Vol.39, No. 11 (November 2001), pp.2131-2140.
16. Jiang, Z., Takayama, K. and Skews, B. W., “Numerical study on blast flowfields induced by supersonic projectiles discharged from shock tubes,” Physics of Fluids, No. 10 (1998), pp.277-288.
17. Widhopf, G. F., Buell, J. C. and Schmidt, E. M., “Time-Dependent Near Field Muzzle Brake Flow Simulation,” AIAA Paper 82-0973 (June 1982).
18. Buell, J. C. and Widhopf, G. F., “Three-Dimension Simulation of Muzzle Brake Flow Fields,” AIAA Paper 84-1641 (Jane 1984).
19. Cooke, C. H. and Fansler, K. S., “Numerical Simulation of Silencers,” Proc. 10th Int. Symp. On Ballistics, San Diego, CA, (October 1987), pp.27-28.
20. Cooke, C. H. and Fansler, K. S., “Comparison with Experiment for TVD Calculations of Blast Waves from a Shock Tube,” International Journal for Numerical Methods in Fluids, Vol.9 (1989) pp.9-12.
21. Schmidt, E. M. and Duffy, S. “Noise from Shock Tube Facilities,” AIAA Paper 85-0046 (January 1985).
22. Wang, J. C. T. and Widhopf, G. F. “Numerical Simulation of Blast Flowfields Using A High Resolutin TVD Finite Volume Scheme,” Computers & Fluids Vol. 18. No. 1 (1990), pp.103-137.
23. Roe, P. L., “Approximate Riemann Solvers, Parameter Vector, and Difference Schemes,” Journal of Computational Physics, Vol. 43 (1981), pp.357-372.
24. Van Leer, B., “Towards the Ultimate Conservative Difference Scheme. V: A Second Order Sequel to Godunov’s Method,” Journal of Computation Physics, Vol. 32 (1979), pp.101.
25. Sweby, P. K., “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM J. Numerical Analysis, Vol. 21 (1984), pp.995-1011.
26. Oswatitsch, K., “Flow Research to Improve the Efficiency of Muzzle Brakes, Part I through Part III,” Muzzle Brake, E. W. Hammer (ed.), Franklin Institute, 1949.
27. Smith, F., “Model Experiments on Muzzle Brakes, Part III: Measurement of Pressure Distribution” RARDE R3/68, Royal Armament Research and Development Establishment, Fort Halstead, U.K., 1968.
28. Salsbury, M. J., “The Effects of a Muzzle Brake’s Diameter and Length on Overpressure and Efficiency,” TR 66-2920, U.S. Army Weapons Command, Rock Island Arsenal, Il, Oct. 1966.
29. Baur, E. H. and Schmidt, E. M., “Relationship Between Efficiency and Blast from Gas Dynamic Recoil Brakes,” BRL Report , U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Md., Jan. 1982.
30. Guntev, K. and Joseph, M. H., “Gun Muzzle Blast and Flash,” Vol. 139 Progress in Astronautics and Aeronautics, AIAA, Chap. 1,New York 1992.
31. Guntev, K. and Joseph, M. H., “Gun Muzzle Blast and Flash,” Vol. 139 Progress in Astronautics and Aeronautics, AIAA, Chap. 2, New York 1992.
32. Guntev, K. and Joseph, M. H., “Gun Muzzle Blast and Flash,” Vol. 139 Progress in Astronautics and Aeronautics, AIAA, Chap. 5, New York 1992.
33. Stiefel, L.(ed), “Gun Propulsion Technology”, Vol. 109, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 1988.
34. Sweby, P. K., “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM J. Numerical Analysis, Vol. 21, 1984, pp.995.
35. Jameson, A., Schmidt, W. and Turkel, E., “Numerical Solutions of the Euler Equations by a Finite Volume Method Using Runge-Kutta Time-stepping Schemes,” AIAA Paper 81-1259, Jun., 1981.
36. Hirsch, C., “Numerical Computation of Internal and External flow,” Vol. 1, 1989, John Wiley & Sons Ltd. Chap.6.
37. Roe, P. L., “Approximate Riemann Solvers, Parameter Vector, and Difference Schemes,” Journal of Computational Physics, Vol. 43, 1981, pp.357-372.
38. Van Leer, B., Thomas, J. L., Roe, P. L. and Newsome, R. W., “A Comparison of Numerical Flux Formulas for the Euler and Navier-Stokes Equations,” AIAA Paper 87-1104-CP, 1987.
39. Van Leer, B., “On the Relation between the Upwind-Difference Schemes of Godunov, Engquist-Osher and Roe,” SIMA Journal on Scientific and Statistical Computing, Vol. 5, 1984.
40. Van Leer, B., Lee, W. T. and Powell, K., “Sonic-Point Capturing,” AIAA Paper 89-1945, June, 1989.
41. Hirsch, C., “Numerical Computation of Internal and External flow,” Vol. 2, 1990, John Wiley & Sons Ltd. Chap.21.
42. Harten, A., “On the Nonlinearity of Modern Shock-Capturing Schemes,” ICASE Report 86-69, Oct. 1986.
43. Tai, C. H., Chiang, D. C. and Su, Y. P., “Explicit Time Marching Method for the Time-Depent Euler Computations,” Journal of Computational Physics, Vol. 130, pp.191-202,1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳芃(2003)。不要「熱」島要「綠」島─談熱島效應與都市綠洲。能源報導,7,9。
2. 陳昭銘、汪鳳如(2000)。台灣地區長期暖化現象與太平洋海溫變化之關係。大氣科學,28:3,221-222、224-225、229-231、238。
3. 陳熙揚(1999)。溫室效應與台灣氣候變遷。中國地理學會會刊,27,31、51、52。
4. 莊秉潔、吳明進、劉啟清、陳世煥(1996)。台灣區域性氣候變化。中國環境工程學刊,6:2,132-133。
5. 2. 翁崇雄,2000,”服務品質評量模式之比較研究”,中山管理評論,頁105-122。
6. 1. 吳明烈,2002,知識管理與學習型組織,教育資料與研究,Vol. 45,pp. 49-61。(轉載自成教雙月刊第63期)。
7. 陳正改(2000b)。臺灣地區近百年來之氣候變化。臺灣文獻,51:1,45、48-49。
8. 許志義(1997)。論全球溫室效應與因應對策。經濟情勢暨評論雜誌,2:4,127-141。
9. 蔡佳珊(2001)。台灣與全球的氣候變遷。經典雜誌,41,118。
10. 陳正改(2000a)。台灣氣候變化的百年觀察。環境科學技術教育專刊,18,54-55、71。
11. 翁國盈(1988)。臺灣五大都市的氣候變化。國立臺灣師範大學地理教育,14,78-80。
12. 3. 許孟祥、詹佳琪,(民91),「虛擬社群之知識分享、知識品質及夥伴關係品質對網路社群成員滿意度之影響」,資訊管理學報,第九卷第一期,1-20頁。
13. 姜善鑫(1991)。地球的增溫與其影響。人文及社會學科教學通訊,1:6,160-161。
14. 姜善鑫(1993)。全球氣候變遷(上)。環境教育季刊,16,1-11。
15. 柳中明(2002)。溫室效應氣體之過去、現在與未來。環境工程會刊,13:1,6。