|
1. Federation of American Scientists, “DoD 101 - An Introduction to the Military, General Purpose Bombs,” Updated Thursday, February 05, 1998. (http://www.fas.org/man/dod-101/sys/dumb/gp.htm) 2. Tang, M. J. and Baker, Q. A., “A New Set of Blast Curves from Vapor Cloud Explosion,” Process Safety Progress, Vol. 18, No. 3 (Winter 1999), pp.235-240. 3. Aizik, F., Ben-Dor, G., Elperin, T. and Igra, O., “General Attenuation Laws for Spherical Shock Waves in Pure and Dusty Gases,” AIAA Journal, Vol.38, No. 5 (May 2001), pp.969-971. 4. Igra, O., Hu, G., Falcovitz, J. and Heilig, W., “Blast Wave Reflection From Wedges,” Journal of Fluids Engineering, Vol. 125 (May 2003), pp.510-519. 5. Mazarak, O., Martins, C. and Amanatides, J., “Animating Exploding Objects,” Graphics Interface 99 (1999), pp.211-218. 6. Yngve, G. D., O’Brien, J. F. and Hodgins, J. K., “Animating Explosions,” Proceedings of SIGGRAPH 2000 (August 2000), pp.29-36. 7. Ben-Dor, G., “Shock wave Reflections Phenomena,” Springer- Verlag, New York, N.Y. (1991). 8. Ben-Dor, G., Igra, O. and Wang, L., “Shock wave Reflections in Dust-Gas Suspensions,” Journal of Fluids Engineering, Vol. 123 (March 2001), pp.145-153. 9. Kim, Y. S. and Lee, D. J., “Computation of Shock-Sound Inter- action Using Finite Volume Essentially Nonoscillatory Scheme,” AIAA Journal, Vol.40, No. 6 (June2003), pp.1239-1240. 10. Liang, S. M., Hsu, J. L. and Wang, J. S., “Numerical Study of Cylindrical Blast-Wave Propagation and Reflection,” AIAA Journal, Vol.40, No. 6 (June 2001), pp.1152-1158. 11. Liang, S. M. and Lo, C. P., “Shock/Vortex Interactions Induced by Blast Waves,” AIAA Journal, Vol.41, No. 7 (July 2003), pp.1341-1346. 12. Sylvie, B. G., Coulombel, J. F. and Aubert, S., “Boundary Conditions for Euler Equations,” AIAA Journal, Vol.41, No. 11 (January 2003), pp.56-63. 13. Omang, M., Borve, S. and Trulsen, J., “Numerical Simulation of Shock-Vortex Interactions Using Regularized Smoothed Particle Hydrodynamics,” Computational Fluid Dynamics Journal, 12(2):32 (July 2003), pp.1~9. 14. Krajnovic, S. and Davidson, L., “Numerical Study of the Flow Around a Bus-Shaped Body,” Transactions of the ASME, Vol. 125 (May 2003), pp.500-509. 15. Grasso, F., Marini, M., Ranuzzi, G., Cuttica, S. and Chanetz, B., “Shock-Wave/Turbulent Boundary-Layer Interactions in Nonequilibrium flows,” AIAA Journal, Vol.39, No. 11 (November 2001), pp.2131-2140. 16. Jiang, Z., Takayama, K. and Skews, B. W., “Numerical study on blast flowfields induced by supersonic projectiles discharged from shock tubes,” Physics of Fluids, No. 10 (1998), pp.277-288. 17. Widhopf, G. F., Buell, J. C. and Schmidt, E. M., “Time-Dependent Near Field Muzzle Brake Flow Simulation,” AIAA Paper 82-0973 (June 1982). 18. Buell, J. C. and Widhopf, G. F., “Three-Dimension Simulation of Muzzle Brake Flow Fields,” AIAA Paper 84-1641 (Jane 1984). 19. Cooke, C. H. and Fansler, K. S., “Numerical Simulation of Silencers,” Proc. 10th Int. Symp. On Ballistics, San Diego, CA, (October 1987), pp.27-28. 20. Cooke, C. H. and Fansler, K. S., “Comparison with Experiment for TVD Calculations of Blast Waves from a Shock Tube,” International Journal for Numerical Methods in Fluids, Vol.9 (1989) pp.9-12. 21. Schmidt, E. M. and Duffy, S. “Noise from Shock Tube Facilities,” AIAA Paper 85-0046 (January 1985). 22. Wang, J. C. T. and Widhopf, G. F. “Numerical Simulation of Blast Flowfields Using A High Resolutin TVD Finite Volume Scheme,” Computers & Fluids Vol. 18. No. 1 (1990), pp.103-137. 23. Roe, P. L., “Approximate Riemann Solvers, Parameter Vector, and Difference Schemes,” Journal of Computational Physics, Vol. 43 (1981), pp.357-372. 24. Van Leer, B., “Towards the Ultimate Conservative Difference Scheme. V: A Second Order Sequel to Godunov’s Method,” Journal of Computation Physics, Vol. 32 (1979), pp.101. 25. Sweby, P. K., “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM J. Numerical Analysis, Vol. 21 (1984), pp.995-1011. 26. Oswatitsch, K., “Flow Research to Improve the Efficiency of Muzzle Brakes, Part I through Part III,” Muzzle Brake, E. W. Hammer (ed.), Franklin Institute, 1949. 27. Smith, F., “Model Experiments on Muzzle Brakes, Part III: Measurement of Pressure Distribution” RARDE R3/68, Royal Armament Research and Development Establishment, Fort Halstead, U.K., 1968. 28. Salsbury, M. J., “The Effects of a Muzzle Brake’s Diameter and Length on Overpressure and Efficiency,” TR 66-2920, U.S. Army Weapons Command, Rock Island Arsenal, Il, Oct. 1966. 29. Baur, E. H. and Schmidt, E. M., “Relationship Between Efficiency and Blast from Gas Dynamic Recoil Brakes,” BRL Report , U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Md., Jan. 1982. 30. Guntev, K. and Joseph, M. H., “Gun Muzzle Blast and Flash,” Vol. 139 Progress in Astronautics and Aeronautics, AIAA, Chap. 1,New York 1992. 31. Guntev, K. and Joseph, M. H., “Gun Muzzle Blast and Flash,” Vol. 139 Progress in Astronautics and Aeronautics, AIAA, Chap. 2, New York 1992. 32. Guntev, K. and Joseph, M. H., “Gun Muzzle Blast and Flash,” Vol. 139 Progress in Astronautics and Aeronautics, AIAA, Chap. 5, New York 1992. 33. Stiefel, L.(ed), “Gun Propulsion Technology”, Vol. 109, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 1988. 34. Sweby, P. K., “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM J. Numerical Analysis, Vol. 21, 1984, pp.995. 35. Jameson, A., Schmidt, W. and Turkel, E., “Numerical Solutions of the Euler Equations by a Finite Volume Method Using Runge-Kutta Time-stepping Schemes,” AIAA Paper 81-1259, Jun., 1981. 36. Hirsch, C., “Numerical Computation of Internal and External flow,” Vol. 1, 1989, John Wiley & Sons Ltd. Chap.6. 37. Roe, P. L., “Approximate Riemann Solvers, Parameter Vector, and Difference Schemes,” Journal of Computational Physics, Vol. 43, 1981, pp.357-372. 38. Van Leer, B., Thomas, J. L., Roe, P. L. and Newsome, R. W., “A Comparison of Numerical Flux Formulas for the Euler and Navier-Stokes Equations,” AIAA Paper 87-1104-CP, 1987. 39. Van Leer, B., “On the Relation between the Upwind-Difference Schemes of Godunov, Engquist-Osher and Roe,” SIMA Journal on Scientific and Statistical Computing, Vol. 5, 1984. 40. Van Leer, B., Lee, W. T. and Powell, K., “Sonic-Point Capturing,” AIAA Paper 89-1945, June, 1989. 41. Hirsch, C., “Numerical Computation of Internal and External flow,” Vol. 2, 1990, John Wiley & Sons Ltd. Chap.21. 42. Harten, A., “On the Nonlinearity of Modern Shock-Capturing Schemes,” ICASE Report 86-69, Oct. 1986. 43. Tai, C. H., Chiang, D. C. and Su, Y. P., “Explicit Time Marching Method for the Time-Depent Euler Computations,” Journal of Computational Physics, Vol. 130, pp.191-202,1997.
|