跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 11:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫文仁
研究生(外文):We-Len Sun
論文名稱:苔蘚桿菌聚木糖酶之協同性及生產木寡醣最適條件之探討
論文名稱(外文):Synergistic effect of endoxylanase from Bacillus licheniformis and optimal production of xylooligosaccharides
指導教授:廖遠東
指導教授(外文):Ean-Tun Liaw
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:110
中文關鍵詞:苔蘚桿菌聚木糖酶協同性益生作用
外文關鍵詞:Bacillus licheniformisxylanasesynergismprebiotic effect
相關次數:
  • 被引用被引用:3
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以自行純化之Bacillus licheniformis內切聚木糖酶,分別進行纖維酵素協同性、降解產物分析及木寡醣益生特性之探討。首先將聚木糖酶 (xylanase)、纖維素酶 (cellulase) 及木糖苷酶 (xylosidase) 作複合酵素組合,並以樺木聚木醣 (birchwood xylan)、麥木聚木醣 (oat-spelts xylan)、玉米穗軸、未預處理之蔗渣、不同濃度硫酸處理之玉米穗軸及蔗渣粗半纖維素為受質,測定複合酵素間之協同性。另外以麥木聚木醣及樺木聚木醣為基質,於不同水解時間下進行木寡醣之製備,並以高效液相層析儀進行產物分析,且選擇Bifidobacterium bifidum、Lactobacillus acidophilus、Clostridium perfringens為對象,評估聚木糖酶水解產物對腸道益生菌及有害菌生長之影響。實驗結果顯示,1.5% 硫酸處理之玉米穗軸及未預處理之蔗渣,以cellulase/xylanase降解,其加乘效果最好,DSE值分別可達1.67及2.17,而樺木聚木醣、麥木聚木醣、蔗渣粗半纖維素則以xylanase/xylosidase協同性最佳,DSE值分別可得1.59、1.94及1.89。在降解產物分佈方面,麥木聚木醣以聚木糖酶反應48小時,其二醣至六醣所佔比例分別為18、25、7、18及13%,而樺木聚木醣之寡醣分佈則以二、三醣為主,兩者約可佔總寡醣含量8成以上。另外益菌作用結果指出,木寡醣於低濃度下,其促進有益菌增殖之效果並不顯著,然而提高二、三、四醣濃度總和至30,000 ppm及延長木寡醣與菌體培養時間達72小時,則麥木聚木醣降解產物可抑制C. perfringens及促進B. bifidum之增殖。
The objective of the present study is to conduct the hydrolysate profiles of xylan, prebiotic effect of xylooligosaccharides and synergistic effect by a purified endoxylanase derived from Bacillus licheniformis. First all, a synergistic effect on birchwood xylan, oat-spelts xylan, corn cob, untreated sugar cane bagasse, H2SO4 treated corn cob and hemicellulose prepared from sugar cane bagasse by single xylanase, cellulase and xylosidase or combined enzymes among them were systematically established. Xylooligosaccharides prepared from birchwood and oat-spelts xylan was colleted for prebiotic study using Bifidobacterium bifidum, Lactobacillus acidophilus, Clostridium perfringens as subjects. The results indicated that cellulase/xylanase exhibited the optimal synergistic effect on 1.5% H2SO4 treated corn cob and untreated sugar cane bagasse, where were DSE of 1.67 and 2.17, respectively. Furthermore, xylanase/xylosidase displayed the most efficient hydrolysis in Birchwood xylan, oat-spelts xylan and hemicellulose (from sugar cane bagasse), where were DSE of 1.59, 1.94 and 1.89, respectively. Hydrolysate profiles of oat-spelts xylan showed that the relative ratio of xylobiose to
xylohexaose is 18, 25, 7, 18 and 13% respectively, but the major hydrolysates of birchwood xylan are xylobiose and xylotriose which are composed of 80% of total oligomers. Prebiotic study illustrated that little acceleration on microbial growth was observed if low concentration of xylooligomers was employed. However, a moderate effect was found in C. perfringens inhibition and B. bifidum stimulation when increase the total xylobiose, xylotriose and xylotetraose concentration to 30,000 ppm and extend the incubation period up to 72 hours.
目錄

中文摘要……………………………………………………………………....I
英文摘要…………………………………………………….……………….II
誌謝………………………………………………………………………….IV
目錄…………………………………………………………………………..V
圖表目錄………………………………………………………...…………..IX
第1章 前言…………………………………………………………………..1
第2章 文獻回顧…………………………………………………………..... 3
2.1 植物纖維質之組成…………………………………………………… 3
2.1.1 細胞壁之多醣……………………………..……………………...3
2.1.2 半纖維素…………………………………………………………. 6
2.1.2.1 半纖維素之組成……………………………………………..6
2.1.3 聚木醣之構造…………………………………………………….8
2.2 本省農產廢棄物處理現況…………………………………………..11
2.2.1 玉米穗軸………………………………………………………...13
2.2.2 甘蔗渣…………………………………………………………...14
2.2.3 農業纖維質降解………………………………………………...14
2.3 嗜高溫菌……………………………………………………………..15
2.3.1 Bacillus licheniformis…………………………………………….15
2.4 聚木醣降解酵素系統………………………………………………..16
2.4.1 作用於聚木醣主鏈之酵素……………………………………...16
2.4.1.1 Endo-β-1,4-xylanase (EC 3.2.1.8)…………………………...16
2.4.1.2 β-1,4-xylosidase (EC 3.2.1.37)………………………………17
2.4.2 作用於聚木醣側鏈之酵素……………………………………...17
2.4.2.1 Arabinofuranosidase (EC 3.2.1.55)………………………….17
2.4.2.2 α-Glucuronidase (EC 3.2.1.1)……………………………….17
2.4.2.3 Acetylxylan esterase (EC 3.1.1.6)…………………………...17
2.4.2.4 Phenolic acid esterases………………………………………18
2.4.3 xylanase之種類與反應機制....................................................18
2.4.3.1 催化機制……………………………………………………18
2.4.3.2 xylanase之催化能力………………………………………..18
2.4.3.3 xylanase之結構……………………………………………...20
2.5 酵素的加乘作用……………………………………………………..22
2.5.1 協同作用之公式………………………………………………...24
2.5.2 影響酵素協同性之因子………………………………………...24
2.5.3 高聚木醣受質降解之酵素協同性……………………………...24
2.6 聚木醣降解產物……………………………………………………..25
2.6.1 木糖之應用……………………………………………………...25
2.6.2 木寡醣之應用…………………………………………………...25
2.7 膳食纖維之生理功能………………………………………………..28
2.8 木寡醣之益生特性…………………………………………………..28
第3章 材料與方法………………………………………………………....31
3.1 實驗設計…………………………………………………..…………31
3.2 實驗藥品……………………………………………………………..32
3.2.1 一般化學藥品…………………………………………………...32
3.2.2 酵素純化材料…………………………………………………...32
3.2.3 內切聚木糖酶 (endo-β-1,4-xylanase) 生產菌…………………33
3.2.4 協同作用 (Synergistic effect)…………………………………..33
3.2.4.1 受質種類……………………………………………………33
3.2.4.2 酵素種類……………………………………………………33
3.2.5 HPLC產物分析 (Product profile)……………………………34
3.2.5.1 木寡醣來源…………………………………………………34
3.2.5.2 HPLC標準品…………………………………………….....34
3.2.6 益生效果探討 (Probiotic effect)………………………………..34
3.2.6.1 菌株來源……………………………………………………34
3.2.6.2 市售寡醣產品………………………………………………34
3.3 儀器設備……………………………………………………………..35
3.3.1 一般儀器…………………………………………………...……35
3.3.2 酵素純化器材…………………………………………………...35
3.3.3 高效液相層析設備……………………………………………...35
3.3.4 微生物試驗設備………………………………………………...36
3.4 實驗方法……………………………………………………………..36
3.4.1 Xylanase之生產…………………………………….............36
3.4.1.1 Bacillus licheniformis液態培養基組成………………….36
3.4.1.2 粗酵素液之製備……………………………………………36
3.4.1.3 高濃度酵素液之製備………………………………………37
3.4.2 Xylanase之純化……………………………………................37
3.4.2.1 DEAE-Sepharose離子交換層析……………………………37
3.4.2.2 Sephacryl S-200 HR膠體過濾層析………………………...37
3.4.3 聚木醣水解酵素活性之測定…………………………………...38
3.4.3.1 磷酸緩衝液及DNS試劑之配製.………....38
3.4.3.2 木糖檢量線之建立……………………………………...….38
3.4.3.3 活性測定……………………………………………………38
3.4.4 蛋白質定量……………………………………………………...39
3.4.4.1 蛋白質檢量線之建立………………………………………39
3.4.4.2 Xylanase蛋白質濃度測定……………………..................39
3.4.5 協同作用………………………………………………………...39
3.4.5.1 受質預處理…………………………………………………39
3.4.5.2 各種受質 (2%, w/v) 溶液之製備…………………………40
3.4.5.3 經純化之xylanase其β-xylosidase、cellulase活性測定....41
3.4.5.4 葡萄糖檢量線之建立……………………………………....41
3.4.5.5 加乘作用後之還原糖測定…………………………………41
3.4.5.6 酵素加乘反應………………………………………………42
3.4.6 聚木醣水解產物分析…………………………………………...43
3.4.6.1 木寡醣製備…………………………………………………43
3.4.6.2 水解產物分析 (product profile analysis)……………...…..43
3.4.7 益生菌生長試驗………………………………………………...44
3.4.7.1 菌種選購與保存……………………………………………44
3.4.7.2 MRS Broth配製…….......……………………...…………44
3.4.7.3 AC Broth配製…………………………………………….45
3.4.7.4 保存菌株活化………………………………………………45
3.4.7.5 體外試驗……………………………………………………45
第4章 結果與討論………………………………………………………....47
4.1 聚木糖酶之分離與純化……………………………………………..47
4.2 協同性試驗…………………………………………………………..47
4.2.1 單一酵素及複合酵素作用不同受質…………………………...47
4.2.2 協同性最佳之酵素組合………………………………………...49
4.2.3 改變酵素活性比對加乘效果之影響…………………………...52
4.2.3.1 改變cellulase/xylanase活性比對協同性之影響…………..52
4.2.3.2 改變xylanase/xylosidase活性比對協同性之影響………...54
4.2.4 時間對複合酵素作用之影響…………....……………………...55
4.2.4.1 延長cellulase/xylanase作用時間…………………………..55
4.2.4.2 延長xylanase/xylosidase作用時間………………………...56
4.3 水解產物分析………………………………………………………..56
4.3.1 高效液相層析…………………………………………………...56
4.3.2 水解產物積分面積及產物分佈之探討………………………...57
4.4 益生作用……………………………………………………………..59
第5章 結論………………………………………………………………....96
參考文獻…………………………………………………………………….98
作者簡介…………………………………………………………………...110
王銀波。1999。利用堆肥法處理農牧廢棄物之優點。堆肥製造技術,第41-2頁。行政院農委會。

李中正。2005。煙麴黴中β-葡萄糖苷酶之純化及生化特性探討。國立屏東科技大學食品科學研究所碩士論文。

李臻育。2005。Aneurinibacillus thermoaerophilus耐熱性聚木糖酶之純化與生化特性探討。國立屏東科技大學食品科學研究所碩士論文。

李春蓮。2001。Bacillus licheniformis聚木醣分解酵素之純化與生化特性探討。國立屏東科技大學食品科學研究所碩士論文。

李世龍。1996。利用農業廢棄物玉米穗軸製造粒狀活性碳之可行性研究。國立台灣大學環境工程研究所碩士論文。

育儀豪。2001。蔗渣堆肥中嗜高溫菌之分離與應用。國立臺灣大學環境工程學研究所碩士論文。

林錫雄。2001。台灣物質流之建置與應用研究初探。中原大學國際貿易學系碩士論文。

周楚洋。1998。農業廢棄物處理之回顧與前瞻。高知武教授紀念研討會論文集,第121-30頁。台灣大學農業機械工程學系。

馬盈瑜。2003。龍鬚菜多醣及其水解產物生理活性之探討。國立屏東科技大學食品科學研究所碩士論文。

梁致遠、林鴻其。1991。纖維質材料的加氮作用-熱分解和羰尿縮合。國
立台灣大學農業化學研究所碩士論文。

黃妃君。1997。纖維素分解酵素生產菌的篩選培養條件及糖化作用之探討。國立屏東技術學院食品技術研究所碩士論文。

詹社紅。2001。探討寡木醣之攝取對成年大白鼠腸道生理及菌群之影響。靜宜大學食品營養系碩士論文。

廖彩娟。2000。微生物間之纖維分解酵素的協同性。國立屏東科技大學食品科學研究所碩士論文。

潘泰安。2004。以農業廢棄物為原料合成微孔吸附劑之資源化研究。國立高雄第一科技大學環境與安全衛生工程所碩士論文。

謝孟洲。2004。Aspergillus carneus M34 聚木糖酶與植酸酶同步生產之評估及聚木醣酶最適化生產。國立中興大學食品科學系碩士論文。

簡里玲。2000。枯草菌聚木醣酶之性質與應用研究。靜宜大學食品營養系碩士論文。

Aguilar R, Ramirez JA, Garrote G, Vazquez M. 2002. Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309-18.

Andrews SR, Charnock SJ, Lakey JH, Davies GJ, Claeyssens M, Nerinckx W, Underwood M, Sinnott ML, Warren RAJ, Gilbert HJ. 2000. Substrate specificity in glycoside hydrolase family 10. J Biol Chem 275:23027-33.

Biedrzycka E, Bielecka M. 2004. Prebiotic effectiveness of fructans of different degrees of polymerization. Trends in Food Sci and Technol 15:170-75.
Busto MD, Ortega N, Perez-Mateos M. 1996. Location, kinetics and stability of cellulases induced in Trichoderma reesei cultures. Bioresource Technol 57:187-92.

Brownell HH, Saddler JN. 1987. Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis. Biotech Bioeng 29:228-35.

Chen HM, Zheng L, Lin W, Yan XJ. 2004. Product monitoring and quantitation of oligosaccharides composition in agar hydrolysates by precolumn labeling HPLC. Talanta 64:773-7.

Calik P, Tomlin GC, Oliver SG, Ozdamar TH. 2003. Overexpression of a serine alkaline protease gene in Bacillus licheniformis and its impact on the metabolic reaction network. Enzyme and Microbial Technol 32:706-20.

Csiszar E, Urbanszki K, Szakacs G. 2001. Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catalysis B: Enzymatic 11:1065-72.

Chen C, Chen JL, Lin TY. 1997. Purification and characterization of a xylanase from Trichoderma longibrachiatum for xylooligosaccharide production. Enzyme Microbial Technol 21:91-6.

Carpita NC. 1996. Structure and biogenesis of the cell walls of grasses. Annual Rev Plant Physiol and Plant Mol Biol 47: 445-76.

Counghlan MP, Hazlewood GP. 1993. β-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17: 259-89.

Degefu Y. 2003. Cloning and characterisation of xylanase genes from phytopathogenic fungi with a special reference to Helminthosporium turcicum, the cause of northern leaf. Helsinki University. Thesis.

Damaso MCT, Andrade CMMC, Pereira N Jr.. 2002 Production and properties of the cellulase-free xylanase from Thermomyces lanuginosus IOC-4145. Brazilian J Microbiol 33:333-8.

Ducros V, Charnock SJ, Derewenda U, Derewenda ZS, Dauter Z, Dupont C, Shareck F, Morosoli R, Kluepfel D, Davies GJ. 2000. Substrate Specificity in Glycoside Hydrolase Family 10. J Biol Chem 275:23020-6.

Dalboge H. 1997. Expression cloning of fungal enzyme genes; a novel approach for efficient isolation of enzyme genes of industrial relevance. FEMS Microbiol Rev 21:29-42.

Duchiron F, Legin E, Ladrat C, Gantelet H, Barbier G. 1997. New thermostable enzymes for crop fractionation. Industrial Crops and Products 6:265-70.

Dominguez R, Souchon H, Spinelli S, Dauter Z, Wilson KS, Chauvaux S, Beguin P, Alzari PM. 1995. A common protein fold and similar active site in two distinct families of b-glycanases. Nature Struct Biol 2:569–76.

Derewenda U, Swenson L, Green R, Wei Y, Morosoli R, Shareck F, Kluepfel D, Derewenda ZS. 1994. Crystal structure, at 2.6 A° resolution, of the Streptomyces lividans xylanase A, a member of the F family of β-1,4-D-glycanases. J Biol Chem 269:20811–14.

Darvill JE, McNeil M, Darvill AG, Albersheim P. 1980. Structure of plant cell walls. XI. Glucuronoarabinoxylan, a second hemicellulose in the primary cell walls of suspension-cultured sycamore cells. Plant Physiol 66:1135-39.

Ebringerova A, Heinze T. 2000. Xylan and xylan derivatives-biopolymers with valuable properties, 1. Naturally occurring xylans, isolation procedures and properties. Macromol Rapid Commun 21: 542-56.

Ebringerova A, Hromadkova Z, Hribalova V. 1995. Structure and mitogenic activities of corn cob heteroxylans. J Biol Macromol 17:327-31.

Fooks LJ, Gibson GR. 2002. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol Ecology 39:67-75.

Flores ME, Perea M, Rodriguez O, Malvaez A, Huitron C. 1996. Physiological studies on induction and catabolite repression of β-xylosidase and endoxylanase in Streptomyces sp. CH-M-1035. J Biotechnol 49:179-87.

German B, Schiffrin EJ, Reniero R, Mollet B, Pfeifer A, Neeser JR. 1999. The development of functional foods: lessons from the gut. Trends Biotechnol 17:492-9.

Hashimoto T, Nakata Y. 2003. Synergistic degradation of arabinoxylan with α-L-arabinofuranosidase, xylanase and β-xylosidase from soy sauce koji mold, Aspergillus oryzae, in high salt condition. J Biosci and Bioeng 95:164-9.

Hoppensack A, Oppermann-Sanio FB, Steinbuchel A. 2003. Conversion of the nitrogen content in liquid manure into biomass and polyglutamic acid by a newly isolated strain of Bacillus licheniformis. FEMS Microbiol Letters 218:39-45.

Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. African J Biotechnol 2:602-19.

Howard MD, Gordon DT, Garleb KA, Kerley MS. 1995. Dietary fructoligosaccharide, xylooligosaccharide and gum arabic have variable effects on cecal and colonic microbiota and epithelial cell proliferation in mice and rats. J Nutrition 125:2604-9.

Harris GW, Jenkins JA, Connerton I, Cummings N, Leggio LL, Scott M, Hazlewood GP, Laurie JI, Gilbert HJ, Pickersgill RW. 1994. Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Struct 2:1107–16.

Henrissat B. 1990. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309-16.

Ioannes PD, Peirano A, Steiner J, Eyzaguirre J. 2000. An α-L-arabinofuranosidase from Penicillium purpurogenum: production, purification and properties. J Biotechnol 76:253-8.

Ibrahim M. 1998. Clean fractionation of biomass steam explosion and extraction. Virginia Polytechnic Institute and State University. Thesis.

Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K. 1998. Oat β-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl Microbiol Biotechnol 49:175-81.

Katapodis P, Vrsanska M, Kekos D, Nerinckx W, Biely P, Claeyssens M, Macris BJ, Christakopoulos P. 2003. Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydrate Research 338:1881-90.

Kumar AR, Hegde SS, Ganesh KN, Khan MI. 2003. Structure changes enhance the activity of Chainia xylanase in low urea concentrations. Biochimica et Biophysica Acta 1645:164-71.

Kulkarni N, Shendye A, Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411-56.

Karlsson EN, Dahlberg L, Torto N, Gorton L, Holst O. 1998. Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase Xyn1 from Rhodothermus marinus. J Biotechol 60:23-35.

Kaur PP, Arneja JS, Singh J. 1998. Enzymic hydrolysis of rice straw by crude cellulase from Trichoderma reesei. Bioresource Technol 66:267-9.

Krengle U, Dijkstra BW. 1996. Three-dimensional structure of endo-1,4-β-xylanase I from Aspergillus niger molecular basis for its low pH optimum. J Mol Biol 263:70-8.

Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ, Lynd LR. 2002. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource technol 81:33-44.

Lavarack BP, Griffin GJ, Rodman D. 2000. Measured kinetics of the acid-catalysed hydrolysis of sugar cane bagasse to produce xylose. Catalysis Today 63:257-65.

Lin X, Wong SL , Miller ES, Shih JCH. 1997. Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J Industrial Microbiol and Biotechnol 19:134-8.

Markovic I, Markovic-Devcic B, Pavlovic N. 2002. The effect of synergism in decreased hydrolysis of biopolymers with enzyme overdosage. Process Biochem 38:783-90.

Miller, L. 1959. Use of dinitrosalycilic acid reagent for determination of reducing sugar. Anal Chem 31:426-8.

Nagata S, Bakthavatsalam S, Galkin AG, Asada H, Sakai S, Esaki N, Soda K, Ohshima T, Nagasaki S, Misono H. 1995. Gene cloning, purification, and characterization of thermostable and halophilic leucine dehydrogenase from a halophilic thermophile, Bacillus licheniformis TSN9. Appl Microbiol Biotechnol 44:432-8.

Nidetzky B, Steiner W, Hayn M, Claeyssens M. 1994. Cellulase hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298:705-10.

O'Neill MA, York WS. 2003. The composition and structures of primary cell walls. Annual Plant Rev 8:1-54.

Okazaki M, Fujikawa S, Matsumoto N. 1990. Effect of xylooligosaccharide on the growth of bifidobacteria. Bifidobacteria Microflora 9:77-86.

Parajo JC, Garrote G, Cruz JM, Dominguez H. 2004. Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends in Food Sci and Technol 15:115-20.

Perego P, Converti A, Borghi MD. 2003. Effects of temperature, inoculum size and starch hydrolyzate concentration on butanediol production by Bacillus licheniformis. Bioresource Technol 89:125-31.

Perez J, Munoz-Dorado J, Rubia T, Martinez J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiol 5:53-63.

Puls J. 1997. Chemistry and biochemistry of hemicelluloses. Relationship between hemicellulose structure and enzymes required for hydrolysis. Macromol Symposium 120:183-96.

Rahman AKMS, Sugitani N, Hatsu M, Takamizawa K. 2003. A role of xylanase, α-L-arabinofuranosidase, and xylosidase in xylan degradation. Canadian J Microbiol 49:58-64.

Roberfroid M. 2002. Functional food concept and its application to prebiotics. Digest Liver Dis 23:105-10.

Rojas A, Holguin G, Glick BR, Bashan Y. 2001. Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecology 35:181-7.

Rozs M, Manczinger L, Vagvolgyi Cs, Kevei F. 2001. Secretion of a trypsin-like thiol protease by a new keratinolytic strain of Bacillus licheniformis. FEMS Microbiol Letters 205:221-4.

Rodionova NA, Tavobilov IM, Bezborodov AM. 1983. β-xylosidase from Aspergillus niger 15: purification and properties. J Appl Biochem 5:300-12.

Ryu DDY, Kim C, Mandels M. 1983. Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol Bioeng 26: 488-96.

Sarkar AK, Etters JN. 2004. Enzymatic hydrolysis of cotton fibers: modeling using an empirical equation. J Cotton Sci 8:254-60.

Sarbu A, Goncalves F, Pinho MN. 2003. Oat spelts xylan molecular mass estimation by size exclusion chromatography. Carbohydrate Polymers 53:297-304.

Saha BC. 2002. Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochem 37:1279-84.

Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F. 2002. Endophytes as producers of xylanase. J Biosci and Bioeng 93:88-90.

Shih IL, Van YT, Yeh LC, Lin HG, Chang YN. 2001. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresource Technol 78:267-72.

Saha BC, Bothast RJ. 1999. Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77.
Suwa Y, Koga K, Fujikawa S, Okazaki M, Irie T, Nakada T. 1999. Bifidobacterium bifidum proliferation promoting composition containing xylooligosaccharide. USA Patent US 5939309.

Selvendran RR, O'Neill MA. 1987. Isolation and analysis of cell walls from plant material. Methods Biochem Anal 32:25-153.

Stephen AM. 1982. Other plant polysaccharides. In The Polysaccharides Academic press. 2: 97-123.

Streamer M, Eriksson KE, Pettersson B. 1975. Extracellular enzyme system utilized by the fungus: Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. Eur J Biochem 59:607-13.

Tester RF, Karkalas J, Qi X. 2004. Starch structure and digestibility enzyme-substrate relationship. World’s Poultry Sci J 60:186-95.

Tahir TA, Berrin JG, Flatman R, Roussel A, Roepstorff P, Williamson G, Juge N. 2002. Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger. J Biol Chem 277:44035-43.

Torronen A, Rouvinen J. 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochem 34:847–56.

Torronen A, Harkki A, Rouvinen J. 1994. Three-dimensional structure of endo-1,4-β-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J 13:2493–501.

Takagi M. 1987. Pretreatment of lignocellulosic materials with hydrogen peroxide in presence of manganese compounds. Biotech Bioeng 29:165-70.

Vardakou M, Katapodis P, Topakas E, Kekos D, Macris BJ, Christakopoulos P. 2004. Synergy between enzymes involved in the degradation of insoluble wheat flour arabinoxylan.Innovative. Food Sci and Emerging Technologies 5:107-12.

Vieille C, Zeikus GJ. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1-43.

Vazquez MJ, Alonso JL, Dominguez H, Parajo JC. 2000. Xylooligosaccharides: manufacture and applications. Trends in Food Sci and Technol 11: 387-93.

Wakarchuk WW, Campbell RL, Sung WL, Davoodi J, Yaguchi M. 1994. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci 3:467–75.

White A, Withers SG, Gilkes NR, Rose DR. 1994. Crystal structure of the catalytic domain of the β-1,4-glycanase Cex from Cellulomonas fimi. Biochem 33:12546–52.

Woodward J. 1991. Synergism in cellulose systems. Bioresource Technol 36:67-75.

Wong KKY, Tan LUL, Saddler JN. 1988. Multilplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305-17.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳珊珊(2004年9月1日)。〈滾石攜手中國電信 實踐音樂付費下載創舉〉,《數位時代雙週》,89期:第26頁
2. 吳向前、李欣岳(2005年3月1日)。〈它的後座力,不只158公克…iPod風暴,徹底研究〉,《數位時代雙週》,101期:60-63頁
3. 陳英傑(2004年10月1日)。〈賣iPod 惠普開始挖寶數位家庭〉,《數位時代雙週》,91期:第26頁
4. 高子羽(2004年9月1日)。〈RealNetworks再度挑戰蘋果霸主地位〉,《數位時代雙週》,89期:第24頁
5. 施韻茹(2004)。〈華文音樂中心是幻想還是理想?論台灣流行音樂產業的競爭優勢〉,《傳播與管理研究》,2004年7月,第4卷第1期:113-138。
6. 李書齊(2005年3月1日)。〈iPod週邊經濟效應,大吹異業結盟風〉,《數位時代雙週》,101期:94-95頁
7. 李欣岳(2005年3月1日)。〈哪些是iPod概念股?〉,《數位時代雙週》,101期:64-65頁
8. 陳珊珊(2004年1月1日)。〈蘋果iTunes下載量破2500萬首〉,《數位時代雙週》,73期:第32頁
9. 張彥文(2005年1月)。〈線上音樂新玩法 下不下載有關係?〉,《遠見雜誌》,1月號,223期
10. 葉允斌(2004)。〈P2P概念及社會實踐意義初探〉。《資訊社會研究》南華大學社會學研究所,7:219-232。
11. 詹偉雄(2005年5月15日)。〈由iPod熱賣、Clie停產,看─Apple之成功與Sony的挫敗〉,《數位時代雙週》,106期
12. 楊致偉(2005年3月1日)。〈「手機隨身聽」下一個Killer Application!〉,《數位時代雙週》,101期:98-100頁
13. 楊致偉、吳向前(2005年2月1日)。〈全球熱賣1000萬台─蘋果iPod全新啟示錄〉,《數位時代雙週》,99期:40-43頁
14. 楊玟欣(2004年8月)。〈數位音樂大餅人人都想咬一口─P2P笑傲江湖,對手苦不堪言〉,《財訊》,269期:341-345頁
15. 楊文菁(2005年5月15日)。〈iPod之後,蘋果下一顆火藥?〉,《數位時代雙週》,106期:90-93頁