(34.237.124.210) 您好!臺灣時間:2021/02/25 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡福良
研究生(外文):Fu-Liang Tsai
論文名稱:實驗型太陽能輔助光觸媒負壓乾燥機設計與測試
論文名稱(外文):Design and testing of an experimental type solar energy-assisted photocatalytic negative-pressure dryer
指導教授:陳和賢陳和賢引用關係
指導教授(外文):Ho-Hsien Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:104
中文關鍵詞:太陽能乾燥機負壓光觸媒生菌數生菌數落菌數乾燥機乾燥物總面積
外文關鍵詞:solar energy dryervacuumphotocatalysttotal count numberdesignsystemafterdata
相關次數:
  • 被引用被引用:2
  • 點閱點閱:538
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
減緩全球暖化速度的京都協議已於2005年2月生效。根據此協議,141個締約國在2012年時,其溫室效應氣體總排放量必須比1990年的排放量減少5.2%。隨著CO2排放造成的溫室效應,提高再生能源利用率目前已受到先進國家及能源匱乏的國家重視,而太陽能的利用是其中之一。因此,本研究針對食品產業研發一實驗型光觸媒太陽能負壓乾燥機(SEPND)(台灣專利申請中),包含採用密閉有高透光玻璃之乾燥室,可利用太陽光所產生的輻射能做為加熱空氣的來源。利用負壓系統產生負壓以蒸發乾燥物中之水分,使能在白天期間完成乾燥,且保有產品品質,而不使用加熱設備下以達到省能源的目的。同時結合光觸媒殺菌機制,以生產較衛生之乾燥食品。經實驗結果顯示,系統開發部份,屏東地區平均每小時照度354 W/ m2下,本系統之集熱效率為η=0.89,所吸收太陽輻射產生之熱能可依氣候條件於40~60℃時進行乾燥;每小時所轉換功率為1482 W,於總面積4.7 m2集熱板下,可節省4.45元/小時之能源耗費。又因為負壓效應可使測試乾燥物於白天內完成乾燥,若結合光電系統,更能達成完全再生能源之利用。光觸媒之作用使乾燥室內落菌數從平均15 CFU/ plate 降至3 CFU/ plate甚至更低,可符合CNS所規範之工作環境(15 CFU/plate以下)。產品測試部份,負壓乾燥下,測試產品如櫻花蝦、鳳梨片、木瓜片有較快乾燥速率,其平均生菌數亦大幅減少,色澤〝L〞、〝a〞、〝b〞值分析有較高接受度。本研究成果將提供後續設備放大研究之參考。
The Kyoto Protocol, an international pact aimed at reducing the world's greenhouse gas emissions, came into effect in February 2005. The accord was ratified by 140 nations which pledge to cut gas emissions by 5.2% by 2012 from the 1990 level. As increasing emission of carbon dioxide, the renewable energy such as solar energy has been paid attention by many countries and those countries that are short of energy. In this study, an experimental type solar energy-assisted photocatalytic negative-pressure dryer(SEPND)was developed and tested. It was expected to contribute on the energy saving for food industry. The dryer is consisted of high transmittance glasses used for absorbing the heat from solar radiation. Moisture can be vaporized and removed by the principle of negative-pressure. The design aims to end the drying process in a day-time batch time without using heating sources and it still maintains good quality. Combining the sterilization function of photocatalyst, it can produce the more hygiene dried foods. The results showed that under the average sun radiation 354W/m2 per hour in Pingtung area, the heat collection performanceηis 0.89. The temperature in the cabinet can be in 40-60℃depending on climate condition. The cost saving transferred from 1482W per hour in total area 4.7 m2 of collectors was 4.45 NT dollars. After coating the photocatalyst, the fungus counting in the cabinet was from average 15 CFU/plate to 3 CFU/plate, even lower, which comply with CNS for normal working environment (less than 15 CFU/plate). For the performance test of the dryer, under negative pressure, test samples such as Sergia Lucens , pineapple and papaya are of having fast drying rate, having lower total number count compared that from hot air drying, and being higher acceptance from 〝L〞、〝a〞、〝b〞 values. All the data collected from this experimental type dryer will be used for the development of a scale-up system.
目 錄
中文摘要………………………………………………………………………I
英文摘要……………………………………………………………………III
誌謝…………………………………………………………………………V
目錄…………………………………………………………………………VI
圖目錄………………………………………………………………………X
表目錄……………………………………………………………………XII
附錄圖索引……………………………………………………………… XIII
1. 前言………………………………………………………………………1
2. 文獻回顧…………………………………………………………………3
2.1 農產品乾燥背景……………………………………………………3
2.1.1食品乾燥目的…………………………………………………3
2.1.2乾燥原理………………………………………………………3
2.1.2.1 外部條件控制的乾燥過程…………………………………4
2.1.2.2 內部條件控制的乾燥過程…………………………………4
2.1.3. 物料的乾燥特性………………………………………………5
2.2 農產品乾燥及表示方法……………………………………………5
2.2.1 水分……………………………………………………………5
2.2.2 顏色……………………………………………………………9
2.3 乾燥機設計與分類…………………………………………………9
2.3.1依操作壓力分類…………………………………………………9
2.3.2依熱源的傳達方式分類………………………………………10
2.4 太陽能乾燥………………………………………………………11
2.4.1 太陽能利用的廣闊前景………………………………………11
2.4.2 太陽能吸收轉換和儲存………………………………………12
2.4.3 太陽能乾燥機…………………………………………………13
2.4.3.1 太陽能乾燥機的分類……………………………………14
2.4.3.2 太陽能乾燥機的特點……………………………………14
2.4.4 太陽能熱利用中的傳熱學基礎………………………………19
2.4.4.1熱量傳遞的基本方式………………………………………19
2.4.4.1.1熱傳導…………………………………………………19
2.4.4.1.2對流傳熱………………………………………………20
2.4.4.1.3輻射熱傳………………………………………………21
2.4.4.2太陽輻射的吸收、反射和透射……………………………22
2.4.4.3集熱器的基本能量平衡方程式……………………………23
2.4.4.3.1集熱器總熱損係數……………………………………24
2.4.4.3.1.1頂部熱損係數Ut…………………………………24
2.4.4.3.1.2底部熱損係數Ub…………………………………25
2.4.4.3.1.3側面熱損係數Ue…………………………………26
2.4.4.4集熱效率方程式……………………………………………26
2.5真空的定義…………………………………………………………29
2.5.1絕對真空(absolute vacuum)…………………………………29
2.5.1.1真空的一般定義……………………………………………29
2.5.1.2蒸氣壓(vapour pressure)與飽和蒸氣壓(saturation vapour
pressure)…………………………………………………29
2.5.2真空乾燥………………………………………………………30
2.5.2.1真空乾燥原理………………………………………………30
2.5.2.1.1昇華與蒸發……………………………………………30
2.5.3真空乾燥方法…………………………………………………32
2.5.3.1自然真空乾燥………………………………………………33
2.5.3.2真空加熱乾燥………………………………………………34
2.6光觸媒的介紹………………………………………………………35
2.7彩色的光譜…………………………………………………………36
2.8計算流體動力學分析(computational fluid dynamics)……………37
2.8.1 CFD技術的優點………………………………………………38
3. 材料與方法………………………………………………………………40
3.1 乾燥機組裝材料……………………………………………………40
3.2 使用設備……………………………………………………………41
3.2.1 熱風乾燥機……………………………………………………41
3.2.2 水活性測定……………………………………………………41
3.2.3 顏色測定(〝L〞、〝a〞、〝b〞值)………………………………41
3.2.4 溫、濕、真空度測定…………………………………………41
3.2.5 計算流體力學分析……………………………………………41
3.3 方法………………………………………………………………42
3.3.1不同乾燥方法之比較…………………………………………42
3.3.1.1光觸媒太陽能輔助負壓乾燥………………………………42
3.3.1.2熱風乾燥……………………………………………………42
3.4生菌數測定…………………………………………………………42
3.4.1乾燥機內部落菌數實驗………………………………………42
3.4.2乾燥機產品生菌數實驗………………………………………42
3.4.3生菌數之計算…………………………………………………43
3.4.4多稀釋倍數生菌數實驗之計算………………………………43
3.5顏色測定(〝L〞、〝a〞、〝b〞)值……………………………………43
3.5.1白度值…………………………………………………………44
3.6產品水活性…………………………………………………………44
3.7 乾燥機性能分析……………………………………………………44
3.8 乾燥材料……………………………………………………………44
3.9實驗架構……………………………………………………………45
4. 結果與討論………………………………………………………………49
4.1系統設計與組裝……………………………………………………49
4.2集熱器效率…………………………………………………………52
4.3 光觸媒太陽能負壓乾燥機中高壓風車使用情形之探討…………53
4.4乾燥機空車效能評析………………………………………………54
4.4.1乾燥室內溫度…………………………………………………54
4.4.2 乾燥室內真空度之測量………………………………………57
4.4.3 相對濕度之測量………………………………………………58
4.5 乾燥試驗……………………………………………………………59
4.5.1 乾燥室內溫度…………………………………………………59
4.6 計算流體動力學分析………………………………………………61
4.7 乾燥產品品質分析…………………………………………………69
4.7.1產品乾燥曲線…………………………………………………69
4.7.2 產品色澤分析…………………………………………………73
4.7.3 不同乾燥方法對鳳梨中維生素C之探討…………………75
4.7.4 乾燥機內落菌數之探討………………………………………76
4.7.5 不同乾燥產品生菌數之探討…………………………………79
4.7.6 不同乾燥機之電能消耗分析…………………………………83
4.7.6.1 熱風乾燥機………………………………………………83
4.7.6.2 光觸媒太陽能負壓乾燥機………………………………85
4.7.6.3 不同乾燥機之特性分析…………………………………87
5. 結論………………………………………………………………………89
參考文獻…………………………………………………………………91
附錄CFD軟體參數設定流程圖……………………………………………98
作者簡介…………………………………………………………………104
參考文獻
朱旭山。2003。光觸媒圖解。城邦文化事業出版社。
吳浩。1997。不同乾燥方式對於醃漬鳳梨品質之影響。國立屏東技術學院食品技術研究所碩士論文。
汪復進、戚希仲、程修和、林英才、潘崇良。1995。不同乾燥方法對半乾性虱目魚肉片貯藏安定性之影響。技術學刊 10(2):245-54。
李尚凡、吳瀧川、翁文爐、鄧民有、魏正琪、羅文偉。1994。單元操作。高立圖書有限公司。
卓靜哲。1997。物理化學。三民出版社。
陳淑德。1996。乾燥方法對脫水洋蔥品質之影響。宜蘭農工學報 12:75-84。
陳冠中、陳和賢、黃卓治,2000,檸檬乾燥之研究。國立屏東科技大學食品科學系碩士論文。
陳勇智。2003。利用光觸媒太陽能乾燥機進行農產品乾燥。國立屏東科技大學食品科學系碩士論文。
陳和賢、黃卓治,1999。洋蔥粉冷風乾燥製造技術之開發研究。蔬果加工技術 17-25。
陳和賢、黃卓治、陳勇智,2005。可收集太陽熱能之多用途密閉循環乾燥機。228585,中華民國。
陳宏豪、陳宏偉。2005。真空量測及查漏技術。化工技術142:107-23。
陳國任。1997。部分醱酵茶製造加工法。台糖公司訓練中心。台糖訓練中心講義 1-3。
陳建人。2001。真空技術與應用。行政院國家科學委員會精密儀器發展中心。527-42。
張為憲。1995。食品化學。華香園出版社。
莊嘉琛。1997。太陽能工程。全華科技圖書股份有限公司。
葉致緯。2003。具迴流之多行程太陽能空氣加熱器熱傳效率之改善研究。淡江大學化學工程系碩士論文。
廖明隆。1988。乾燥裝置手冊。大行出版社。
鄭惠宏。2001。盤固草圓筒迴轉型乾燥機之開發研究。國立屏東科技大學機械工程系碩士論文。
盧福明。1986。農產加工工程學。茂昌圖書有限公司。
賴耿陽。2001。太陽能基礎與應用。復漢出版社。
蘇青森。2005。真空技術的發展與應用。化工技術142:81-8。
Akwasi A. 1997. Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy 59(6):121-6.
Augustus M, Kumar S, Bhattacharya SC. 2002. A comprehensive procedure for performance evaluation of solar food dryers. Renewable & Sustainable Energy Reviews 6:367-93.
Brain N. 1991. Solar Energy Thermal Technology. Springer-Verlag 191-259.
Cark WH. 1980. Drying and storage of agricultural crops. The Avi Publishing Company. p 151-71.
Chemkhi S, Zagrouba F, Bellagi A. 2004. Drying of agricultural crops by solar energy. Desalination 168: 101-9.
Chen HH, Hernandez CE, Huang TC. 2005. A study of the drying effect on lemon slices using a closed-type solar dryer. Solar Energy 78: 97-103.
Chen HH. 2003. The Concept of the Green Drying. The Second KU-NPUST Bilateral Conference on Global Food Administration: From Production to Processing. December 2003 Kasetsart University, Bangkok P19: 8-9.
Chen HH, Huang TC. 2005. Multi-function closed-type drying system with solar energy collection arrangement. 10/867,064, USA
Dilip R, Pangavhane RL, Sawhney PN. 2002. Design development and performance testing of a new natural convection solar dryer. Energy 27: 579-90.
Dittler A, Bamberger T, Gehrmann D, Schlunder EU. 1997. Measurement and simulation of the vacuum contact dyring of pastes in a LIST-type kneader drier. Chemical Engineering and Processing 36: 301-8.
Duffie JA, Beckman WA. 1980. Solar engineering of thermal processes. John Wiley and Sons, New York.
Ekechukwu OV, Norton B. 1997. Experimental studies of integral-type natural-circulation solar-energy tropical crop dryers. Energy Conversion and Management 38(14): 1483-500.
Ekechukwu OV. 1999. Review of solar-energy drying systems I: an overview of drying principle and theory. Energy Conversion and Management 40: 593-613.
Ekechukwu OV, Norton B. 1999. Review of solar-energy drying systems II: an overview of solar drying technology. Energy Conversion and Management 40: 615-55.
Ekechukwu OV. 1999. Review of solar-energy drying systems III: Lower temperature air-heating solar collector for crop drying application. Energy Conversion and Management 40: 657-77.
Fellows PJ. 1990. Food processing technology. Ellis Horwood. p 41-68.
Fuller RJ, Charters WWS. 1997. Performance of solar tunnel dryer with microcomputer control. Solar Energy 59(6): 151-4.
Gallalia YM, Abujnaha YS, Bannanib FK. 2000. Preservation of fruits and vegetables using solar drier: a comparative study of natural and solar drying, III; chemical analysis and sensory evaluation data of the dried samples (grapes, ®gs, tomatoes and onions). Renewable Energy 19: 203-12.
Hollick JC. 1999. Commercial scale solar drying. Renewable Energy 16: 714-9.
Kieviet FG, Raaij JV, Damoor PPEA, Kerkhof PJAM. 1997. Measurement and modeling of the air flow pattern in a pilot-plant spray dryer. Institution of Chemical Engineers 321-8.
Karathanos VT, Karanikolas T, Kastaropoulos AE, Saravacos GD. 1995. Non enzymatic browning in air-drying of washed raisins. In ”Food flavor-Generation, analysis, and process influence” New York, Elsevier. P 1057-64.
Karim MA, Hawlader MNA. 2004. Deelopment of solar air collectors for drying applications. Energy Conversion and Management 45: 329-44.
Klein SA. 1975. Calculation of flate-plate loss coefficients. Solar Energy 17: 123-35.
Lembrana JI, Ewira CDE, Villaran MC. 1993. Simulation and design of heating profiles in heat controlled freeze-drying of pharmacellticals in vials by the application of a sublimation cylindrical model. Drying Technology 11(1): 85-102.
Leon MA, Kumar S, Bhattacharya SC. 2002. A comprehensive procedure for performance evaluation of solar food dryers. Renewable and Sustainable Energy Reviews 6: 367-93.
Mclean KA. 1980. Drying and storage of combinable crops. Suffolk Farm Press 65-87.
Mathioulakis E, Karathanos VT, Belessiotis. 1998. Simulation of air movement in a dryer by computational fluid dynamics: application for the drying of fruits. Journal of Food Engineering 36(2): 183-200.
Montgomery SW, Goldschmidt VW, Franchek MA. 1998. Vacuum assisted drying of hydrophilic plates: static drying experiments. International Journal Heat Mass Transfer 41: 735-44.
Madhlopa A, Jones SA, Saka JDK. 2002. A solar air heater with composite–absorber systems for food dehydration. Renewable Energy 27: 27-37.

Ong KS. 1999. Solar dryers in the ASIA-PACIFIC region. Renewable Energy 16: 779-84.
Pangavhane DR, Sawhney RL. 2002. Review of research and development work on solar dryers for grape dryer. Energy Conversion and Management 43: 45-61.
Peleg M, Bagley EB. 1983. Physical properties of foods. The avi publishing company, Inc. p105-22.
Reyes ET, Gonzalez JJN, Salazar BAI. 2002. Thermodynamic method for designing dryers operated by flat-plate solar collectors. Renewable Energy 26: 649-60.
Sahin AZ, Dincer I. 2002. Graphical determination of drying process and moisture transfer parameters for solids drying. Heat and Mass Transfer 45: 3267-73.
Simate IN. 2002. Optimization of mixed-mode and indirect-mode natural convection solar dryers. Renewable Energy 28: 435-53.
Singleton VL, Trousdale E, Zaya J. 1985. One reason sun-dried raisins brown so much. American J. Ecology & Viticulture 36: 111-3.
Singh RP, Heldman DR. 1993. Introduction to Food Engineering. Academic Press, Inc. U. S. A.
Stefan JK. 2000. Toward a thermodynamics and mechanics of drying processes. Chemical Engineering Science 55: 1289-304.

Steffe JF, Singh RP, Miller GE. 1980. Harvest, drying and storage of rough rice. The AVI Publishing Co.
Straatsma J, Houwelingen GV. 1999. Spray drying of food products: 1. Simulation model. Journal of Food Engineering 42(2): 67-72.
Washington DC. 1980. Official method of analysis. 13 edition. Association of official analytical chemists.
Wisniewski G. 1999. Market development of the solar crops drying technologies in Poland and Europe. Renewable Energy 16: 1278-83.
Xia B, Sun DW. 2002. Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and electronics in agriculture 34: 5-24.
Zhong T, Lima M. 2003. The effect of ohmic heating on vacuum drying rate of sweet potato tissue. Bioresource Technology 87: 215-20.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔