(3.237.97.64) 您好!臺灣時間:2021/03/04 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江秉翰
研究生(外文):Chiang, Ping-Han
論文名稱:整合性軟體專案度量模式之建立與應用
論文名稱(外文):Developments and Applications of An Integrated software Project measurement Model
指導教授:黃明祥黃明祥引用關係
指導教授(外文):Huang, Ming-Shang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:146
中文關鍵詞:軟體專案管理軟體度量智慧型代理人知識庫系統
外文關鍵詞:Software MeasurementSoftware MeasurementIntelligent AgentKnowledge-base System
相關次數:
  • 被引用被引用:3
  • 點閱點閱:289
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:3
軟體度量是軟體專案管理中一項重要的研究議題。由於軟體度量不僅能夠評量與預測軟體開發的狀態,同時也是軟體專案規劃與估計的參考依據, 因此,軟體度量是專案開發過程中不可欠缺之重要資訊來源近年來,許多軟體專案已朝向在網際網路環境下開發,若採用人工度量作業的困難度極高。有鑑於此,本研究擬探討在Web環境下之軟體專案度量議題,包括成本、時程、生產力與品質等重要度量議題,並以COCOMOⅡ成本模式、IEEE 1045生產力度量指標標準與ISO 9126品質模式為基礎,結合差異分析法、比例法與加權評分法等提出一個整合性軟體專案度量模式,該模式涵蓋詳細度量程式、指標以及專案評量、預測及決策建議等資訊,並據以發展一套Web-Based的整合型軟體專案度量資訊系統,用以協助使用者進行軟體專案度量工作。
同時,本系統尚結合知識庫系統與智慧型代理人協助專案狀態評量、預測以及相關決策方案分析建議,其中包含狀態評量、決策分析與訊息通知等三種代理人程式之功能,可以有效的解決在網際網路環境下中大型軟體專案度量問題,並且提供一些可行因應方案供專案管理者參考。本研究之個案實例係以國內某大鋼鐵公司研發部門所進行的大型軟體專案計劃作為實證對象,專案管理者可以利用本研究所發展之整合型軟體專案度量資訊系統,在專案執行階段中,進行即時的軟體專案度量,並提供不同開發階段及整體性狀態評量與預測等相關資訊,產生一些適合的相關建議方案,可以做為專案監控的依據。
為驗證本研究所發展之整合型軟體專案度量資訊系統的效益,針對小型、中型與大型等三種不同規模之專案團隊進行模擬分析,經過模擬分析結果,可以發現當專案規模越大以及專案開發人員越多時,節省的工作量也愈多。換言之,本系統對於分散式的中大型軟體專案的度量作業績效愈佳。此外,根據本研究的模擬實驗結果,平均花費執行時間由少至多的順序分別為:(1)整體專案狀態評量與決策、(2)軟體生命週期狀態評量與決策、(3)軟體生命週期時程狀態預測與決策、與(4)軟體生命週期成本狀態預測與決策。而且狀態評量與決策工作所需時間有明顯低於狀態預測與決策工作。整體而言,透過本研究所發展之度量模式與工具不僅能夠有效解決軟體專案的整合性度量問題,且能提供專案狀態評量、預測與決策資訊,累積專案開發的經驗與知識,並且能全面提升上述作業的效率與品質。
Software measurement is an important research issue in software project management. Software metric is a basic index to reflect the status and predictions of schedule and cost of a software project and it is also an important information source for software project planning and estimations. Recently many software projects have been shifted to implement on the Internet. Therefore, it is difficult to implement software measurement by labor work. Based on above descriptions, this research aims to investigate the key issues of implementing software measurement on the web including four kinds of metrics for cost estimation, project progress, productivity, and software quality, etc. In this study, we use COCOMOII, IEEE 1045 and ISO 9126 as a foundation for constructing an integrated software project measurement model. This model proposes a systematic procedure for implementing the software measurement and assessment for software projects and important information needed for software assessment, forecasting, and decision-making at each software development phase are included.
To examine the applicability and practicability of the proposed model, we develop a web-based integrated software metric information system. Furthermore, we integrate knowledge base system and intelligent agent into the software metric information system. It aims to provide useful information such as software assessment, forecasting and decision-making for software developers. A case study in a steel company in Taiwan is conducted. The software project manager can use this web-based software metric information system to implement software measurement and forecast the project progress and moreover integrated information about assessment and forecasting are provided.
To verify the performance of the web-based software metric information system, a simulation study of estimation of efforts implementing on the web is conducted by using the small, median and large-scale software projects. Research findings show that the efforts on software project measurement can be dramatically reduced when the project size is very large. In other words, an agent-based knowledge base system is an effective tool for a medium and large-scale project implementing in a distributed environment. In addition, according to the results of the simulation study, average times spent on the decision-making for assessment and forecasting are ranked as follows: cost assessment and forecasting by software development process, schedule assessment and forecasting by software development process, status assessment and forecasting by software development process, and status assessment and forecasting. Times spent on status assessment and forecasting is apparently less than those on status forecasting and decision-making. In conclusion, the proposed model and the web-based metric information system can not only solve the issues of implementing software measurement, information about status assessment and forecasting are also provided. Moreover, experiences and knowledge are systematically accumulated and then the efficiency and quality of software project management will be effectively improved.
中文摘要 I
ABSTRACT III
誌謝 VI
目錄 VII
圖目錄 IX
表目錄 XII
壹、緒論 1
一、研究背景與動機 1
二、研究目的 3
三、研究流程 4
貮、文獻探討 7
一、軟體開發流程 7
二、軟體度量理論 9
三、軟體度量在軟體開發流程之應用 21
四、智慧型代理人在軟體專案之應用 23
參、整合性軟體專案度量模式 28
一、研究方法 28
二、研究架構 29
三、整合性軟體專案度量模式之建立 31
肆、整合型軟體專案度量資訊系統分析與設計 50
一、系統功能 50
二、系統架構 56
三、系統運作方式 61
伍、系統實作與範例展示 79
一、系統實作環境與開發工具 79
二、範例實作與畫面展示 80
陸、分析與討論 116
一、模擬分析與實驗 116
二、整合性軟體專案度量模式在軟體開發工作應用績效 125
三、研究貢獻 129
柒、結論與後續研究建議 132
一、結論 132
二、後續研究建議 133
參考文獻 135
附錄一、軟體專案品質度量問卷 143
作者簡介 146
[1]王昭正譯,黃雲龍校訂,Brinkerhoff, R.O., and Dressler, D.E.著,初版,生產力之衡量,臺北市:弘智文化,2001。
[2]林信惠,國內軟體生產力影響因素及生產力衡量模式研究,資訊工業策進會研究計劃期末報告,1992。
[3]林信惠、黃明祥與王文良等著,初版,軟體專案管理,臺北:智勝文化,2002。
[4]沙永傑、袁建中,〞軟體生產力衡量指標研究〞,資訊工業策進會文獻,2001。
[5]吳仁和、林信惠著,再版,系統分析與設計,臺北:智勝文化,2001。
[6]黃世禎,國防資訊系統軟體品質度量研究─導入軟體度量於電腦輔助軟體工程工具,國防科技學術合作協調小組合作研究計畫成果報告,2003。
[7]黃世禎,以量化軟體度量指標支援CMMI評鑑之研究,行政院國家科學委員會專題研究計畫成果報告,2004。
[8]黃明祥、盧煥文,以智慧型代理人為基礎的知識庫系統在軟體專案成本估計與控制之應用,資訊管理學報(已接受刊登),2005。
[9]黃明祥、江秉翰,以Web-based為基礎之軟體品質度量資訊系統之建立與應用,2005第一屆資訊管理學術暨專案管理實務研討會,桃園,2005。
[10]資訊工業策進會資訊工程研究所,能力成熟度整合模式CMMI-SE/SW/IPPD/SS V1.1,經濟部技術處,2005。
[11]湯美蓮,以Web為基礎之軟體專案進度監控資訊系統之建立與應用,屏東科技大學資訊管理研究所碩士論文,2004。
[12]Albrecht, A. J. and Gaffnet, J. E., Software function. Source lines of code, and development effort prediction: A software science validation, IEEE Transactions on Software Engineering, Vol.9, No.6, 1983, pp. 639-648.
[13]Azuma, M., Software products evaluation system: quality models, metrics and processes-International Standards and Japanese Practice, Information and Software Technology, Vol.38, 1996, pp.145–154.
[14]Boehm, B., Characteristics of Software Quality, North Holland Publishing Co., New York, 1978.
[15]Boehm, B., Clar, B., Horowitz, E., Westland, C., Madachy, R. and Selby, R., Cost Models for Future Software Life Cycle Processes: COCOMO 2.0, Ann. Software Eng., Volume: 1, No: 1, 1995, pp. 1-30.
[16]Boehm, B., Chulani, S., and Clark, B., Calibrating the COCOMOⅡ Post Architecture Model, http://sunset.usc.edu/Research_Group/Suni-
ta/
[17]Buglione, L. and Abran A., A Quality Factor for Software, Third international Multidisciplinary Congress in Quality and Reliability, ENSAM-RUFEREQ, Paris, France, 25-26 Mar., 1999.
[18]Callahan, J. and Ramakrishnan, S., Software project management and measurement on the World-Wide-Web (WWW), Proceedings of the 5th Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises 1996, 19-21 June, 1996, pp.156 – 161.
[19]Chee, C. L., Ishihara, S., Bharghavan, V., Vij, V. and Ramamoorthy, C.V., RiskExpert: an expert STEP metrics analyzer, Proceedings of Eighteenth Annual International Computer Software and Applications Conference 1994(COMPSAC 94.), 9-11 Nov., 1994, pp.145 – 150.
[20]Chee, C. L., Jarzabek, S. and Paul, R, F-metric: a WWW-based framework for intelligent formulation and analysis of metric queries, Journal of Systems and Software Vol.43, Iss.2, Nov., 1998, pp.119-132.
[21]DeMarco, T., Controlling Software Projects, New York: Yourdon Press, 1982.
[22]Deutsch, M. S. and Willis, R. R., software Quality Engineering: A Total Technical and Management Approach, Prentice-Hall, Inc., 1988.
[23]Dromey, R. G., A Model for Software Product Quality, IEEE Transactions on Software Engineering, Vol.21, No.2, Feb., 1995.
[24]Fenton, N., Software Measurement: A Necessary Scientific Basis, IEEE Transactions on Software Engineering, Vol.20, No.3, Mar. 1994, pp.199-206.
[25]Flaherty, M. J., Programming process productivity measurement system for system/370, IBM Systems Journal, Vol.24, No.2, 1985, pp.168-175.
[26]Fusani, M, Quality Models for Software Evolution Instruments, International Seminar on software measuring & Testing, IEI-CNR/Qualital/SSSUP, Pisa, Italia, 12 Dec., 1995.
[27]Gelman, S., Silver bullet: An iterative Model for Process Definition and Improvement, AT&T Technical Journal, July/Aug., 1994, pp.35-45.
[28]Grady, R. B. and Hewleet-Packard, “Successfully applying software metrics”, IEEE Computer, Vol.27, Iss.9, Sept. 1994, pp.18 – 25.
[29]Gopal, A., Krishnan, M. S., Mukhopadhyay, T. and Goldenson, D. R., Measurement Programs in Software Development: Determinants of Success, IEEE Transactions on Software Engineering, Vol.28, No.9, Sept., 2002, pp.863-875.
[30]Hardeep, V. J., SoftCord:an intelligent agent for coordination in software development projects, Decision Support Systems, Vol.20, Iss.1, May, 1997, pp. 65-81.
[31]IEEE Std. 1045-1992, IEEE Standard for Software Productivity Metrics, 1992.
[32]ISO/IEC, International Standard 9126: Information Technology – Software product evaluation – Quality characteristics and guidelines for their use, 1991.
[33]Johnson, J. R., A working measure of productivity, DATAMATION, Vol.23, No. 2, 1977, pp.106-110.
[34]Jones, T. C., Programming Productivity, McGraw-Hill, New York, 1986.
[35]Jones, C., Patterns of large software systems failure and success, IEEE Computer, Vol.28, Iss.3, 1995, pp.86-87.
[36]Jones, C., Software Sizing, IEE Review, Vol.45, Iss.4, 1999, pp.165-167.
[37]Kalakota. R. and Whinston, A. B., Frontiers of Electronic Commerce, Addison-Wesley Publishing Company, Inc., 1996.
[38]Kitchenham, B., Pfleeger, S. L. and Fenton, N., IEEE Transactions on Software Engineering, Vol.21, No.12, Dec., 1995, pp.929-944.
[39]Kitchenham, B. and Mendes, E., Software Productivity Measurement Using Multiple Size Measures, IEEE Transactions on Software Engineering, Vol. 30, No. 12, Dec., 2004, pp.1023-1035.
[40]Kruchten, P., The Rational Unified Process an Introduction, Second Edition, New York: Addision-Wesley, 2000.
[41]Lejter, M. and Dean, T., A Framework for the Development of Multiagent Architectures, IEEE Computer Society Press, Vol. 11, No. 6, Dec., 1996, pp.47-59.
[42]Liu, X. F. and Viswanathan, R., A WWW Based Software Metrics Environment for software Process management and software Product Quality Improvement, The Twenty-Third Annual International Computer Software and Applications Conference 1999, COMPSAC '99. Proceedings, 27-29 Oct., 1999, pp.301-304.
[43]Liu, X., Kane, G. and Bambroo, M., An intelligent early warning system for software quality improvement and project management, Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, 3-5 Nov,. 2003, pp.32 – 38.
[44]MacCormack, A., Kemerer, C., Cusumano, M. and Crandall, B., Trade-Offs between Productivity and Quality in Selecting Software Development Practices, IEEE Software, Sept./Oct., 2003, pp.78-79.
[45]McCall, J., Richards P. and Walters G., Factors in Software Quality, three volumes, NTIS AD-A049-014, 055, November, 1977.
[46]Moller, K. H. and Paulish, D. J., Software Metrics – A Practitioner’s guide to improved product development, Published by Chapman & Hall, 1993, pp.557.
[47]O'Connor, R. and Jenkins, J., Using Agents for Distributed Software Project Management, IEEE 8th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, 16-18 June, 1999, pp.54 – 60.
[48]Paul, R. A., Kunii, T. L., Shinagawa, Y. and Khan, M. F., Software metrics knowledge and databases for project management, IEEE Transactions on Knowledge and Data Engineering, Vol.11, Iss.1, Jan.
/Feb. 1999, pp.255 – 264.
[49]Pfleeger, S. L., Jeffery, R., Curtis, B. and Kitchednham, B., Status Report on Software Measurement, IEEE Software, Software, Vol.14, Iss.2 , Mar./Apr., 1997, Pages:33 - 43
[50]Pressman, R. S., Software Engineering: A Practitioner’s Approach, 5th, McGraw-Hill, New York, 2000.
[51]Riguzzi, F., A Survey of Software Metric, DEIS Technical Report no. DEIE-LIA-96-010, July, 1996.
[52]Schneidewind, N. F., Body of Knowledge for Software Quality Measurment, IEEE Computer, Vol.35 , Iss.2 , Feb., 2002, pp.77 – 83.
[53]Schulmeyer, G. G. and McManus, J. I., Total Quality Management for Software, International Thomson Pub., Southern Africa, 1996.
[54]Selby, R. W., Porter, A. A, Schmidt, D. C. and Berney, J., Metric-driven analysis and feedback systems for enabling empirically guided software development, Proceedings of 13th International Conference on Software Engineering, 1991, 13-16 May, 1991, pp.288 – 298.
[55]Selby, R. W., Amadeus measurement-driven analysis and feedback system, Proceedings of the DARPA Software Technology Conference, USA, 1992.
[56]Sharma, A. and Capretz, M. A. M., Application maintenance using software agents, Proceedings. First IEEE International Workshop on Source Code Analysis and Manipulation, 2001, pp. 55-64.
[57]Simmons, B. D., A Win-Win Metric Based Software Management Approach, IEEE Transactions on Engineering Management, Vol.39, Iss.1, 1992, pp.32-41.
[58]Simmons, B. D. and Wu, C. S., Software Project knowledge base, Proceedings of the Twenty-Fourth annual International Computer Software and Applications Conference, Taipei, Taiwan, 2000, pp.70-77.
[59]Simmons, D. B., Measuring and tracking distributed software development projects, Proceedings of The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems, 2003, pp. 63-69.
[60]Sycara, K., Pannu, A., Willamson, M., Zeng, D., and Decker, K., Distributed intelligent agents, IEEE Expert, Vol.11, Iss.6, 1996, pp.36-46.
[61]Victor, R. L., Cooperative multiagent systems a personal view of the tate of the art, IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 1, 1999, pp. 133-142.
[62]Vigder, M. R. and Kark, A. W., Software Cost Estimation and Control, Software Engineering Institute for Information Technology, 1994.
[63]Wu, C. S. and Simmons, B. D., Software Project Planning Associate (SPPA): A Knowledge-Based Approach for Dynamic Software Project Planning and Tracking, The 24th Annual International Computer Software and Applications Conference, 25-27 Oct., 2000, pp.305 – 310.
[64]Wulf, W. A., London, R. L. and Mary, S., An Introduction to the Construction and Verification of Alphard Programs, IEEE Transaction Software Engineer SE-2, No.4, 1976, pp. 253–265.
[65]Yan, Y., Kuphal, T. and Bode, J., Application of multi-agent systems in project management, International Journal of Production Economics, 2000, pp. 185-197.
[66]Yin, R. K., Case Study Research: Design and Methods, Sage Pub., 2nd, 1994.
[67]Yu, W. D., Smith, D. P. and Huang, S. T., Software productivity measurement, AT&T Technical Journal, Vol.69, May/June, 1990, pp.110-120.
[68]Zhang, S. and Wang, Y., An extension of SEMEST: the online software engineering measurement tool, Canadian Conference on Electrical and Computer Engineering 2004, Vol.3, 2-5 May, 2004, pp.1519 – 1522.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔