(44.192.112.123) 您好!臺灣時間:2021/03/08 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王國安
研究生(外文):Kao - An Wang
論文名稱:園藝植物酸性甲醇萃取物之抗氧化與抑菌活性
論文名稱(外文):Antioxidative and Antimicrobial Activities of Acidic Methanol Extracts from Horticultural Plants
指導教授:呂廷森呂廷森引用關係
指導教授(外文):Ting - Sen Lu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:農園生產系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:118
中文關鍵詞:類黃酮抗氧化抑菌靜菌作用
外文關鍵詞:flavonoidsantioxidantantimicrobialbacteriostatic action
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1631
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
類黃酮(Flavonoids)為植物體內多酚化合物之一,是一種對人體具有生理效益的二次代謝產物,普遍存在於植物體與中,本實驗採用常見富含類黃酮的材料,包括:洛神花、薰衣草花、蝶豆花、槭葉牽牛花、紅洋蔥、紫色甘藍、紅葉甘藷、和芒果紅色新葉等所含色素,進行抗氧化能力與抑菌效果的調查分析。

在抗氧化結果顯示出,於DPPH清除自由基方法下,所有的材料除蝶豆25 μg/mL較低外,其餘清除率皆可達80%以上。在螯合亞鐵能力方面,以槭葉牽牛200μg/mL最好。於亞麻油酸模擬脂質過氧化系統中,共分成24 小時 、48小時和72小時三種不同時間做比較,在24小時以槭葉牽牛最佳,48小時為洛神200μg/mL較佳,而72小時則以槭葉牽牛200μg/mL為佳。TEAC總抗氧化能力方面,紅葉甘藷最高而蝶豆次之。還原力測試,紅葉甘藷50µg/mL時還原力為最佳,吸光值也是最高的為0.901。於抗氧化物質的分析,總酚類含量分面,是以洛神的總酚含量為最高達950 mg/100g,而紅葉甘藷所含類黃酮為最高為67.2 mg/100g,抗壞血酸含量則是薰衣草8.7 mg/100g最多。

抑菌效果顯示,原始濃度、不同濃度、不同稀釋倍數與不同酸鹼值,對大腸桿菌有效果的為紫色甘藍、薰衣草花與槭葉牽牛花,其中以槭葉
牽牛花最為顯著。金黃色葡萄球菌有效果的是蝶豆、紫色甘藍、薰衣草、槭葉牽牛與芒果新葉。而李斯特菌方面,蝶豆、薰衣草與槭葉牽牛,但蝶豆較不明顯。綠膿桿菌方面,所有樣品皆有抑制效果,以薰衣草與槭葉牽牛最為顯著。沙門氏桿菌,以槭葉牽牛最為顯著。靜菌試驗結果得知,蝶豆對大腸桿菌為靜菌作用,沙門氏桿菌方面靜菌作用的是蝶豆、紫色甘藍與紅葉甘藷。

不論是抗氧化或抑菌方面,本試驗材料皆具有抗氧化與抑菌能力,均可作為新的抗氧化劑與抑菌劑研發之資源材料。
Flavonoids, a second metabolite beneficial to the human body, is one kind of the polyphenolics in plants. In this study, we analyzed the antioxidant and antimicrobial activity of the pigment from plants rich in flavonoids, such as Hibiscus sabdariffa 、Lavandula officinalis、Clitoria ternatea Ipomoea cairica (L.) Sweet、 Allium cepa、Brassica oleracea var. capitata 、Ipomoea batatas (L.) Lam、and Mangifera indica L..

Scavenging effects of flavonoids extract on α,α-dipheny l-β- picrylhydrazyl, the clearance rate of all samples are more than 80%, except 25 μg/mL C. ternatea. The Fe2+ chelating ability of 200μg/mL I. cairica is the best among all samples tested. For the system of linoleic acid autoxidation , we tested the effect of different samples in 24 hrs, 48 hrs, and 72 hrs. I. cairica, H. sabdariffa 200μg/mL and I. cairica 200μg/mL have the best effect in these time points, respectively. For the Trolox equivalent antioxidant capacity (TEAC) assay of flavonoids extract., I. batatas had the highest effect, and C. ternatea was the second. For the test of reducing power activity of flavonoids extract, I. batatas 50 µg/mL had the highest activity and highest O.D value at 0.901. For the analysis of antioxidant compounds, H. sabdariffa contained the highest concentration of total phenolics (950 mg / 100 g); I. batatas contained the highest concentration of flavonoids (67.2 mg / 100 g); and L. officinalis contained the highest concentration of ascorbic acid (8.7 mg / 100 g).

For the results of antimicrobial effects, B. oleracea、L. officinalis and I. cairica had inhibitory effect against Escherichia coli, and the effect of I. cairica was the most significant. C. ternatea、B. oleracea、L. officinalis、I. cairica and M. indica had inhibitory effect against Staphylococcus aureus. C. ternatea、Lavandula officinalis and I. cairica had inhibitory effect against Listeria monocytogenes, the effect of C. ternatea was not very obvious though. All sample tested had inhibitory effect against Pseudomonas aeruginosa, and L. officinalis and I. cairica were the most significant. I. cairica had the most significant inhibitory effect against Salomella typhimurium. The results of bacteriostatic action test suggested that C. ternatea had bacteriostatic action effect on Escherichia. coli, and C. ternatea、B. oleracea and I. batatas had bacteriostatic action effect on Salomella typhimurium.

These results suggested that the samples tested in this study had anti-oxidant and anti-microbial activity and can be used as new sources of antioxidants and antimicrobiotics .
中文摘要------------------------------------------------------------------------- I
英文摘要------------------------------------------------------------------------- III
誌謝------------------------------------------------------------------------------- V
目錄------------------------------------------------------------------------------- VI
圖表目錄------------------------------------------------------------------------- X
第壹章 前言--------------------------------------------------------------------- 1
第一部分 園藝植物酸性甲醇萃取物其抗氧化能力
第貳章 文獻回顧--------------------------------------------------------------- 3
一、 自由基與氧化壓力------------------------------------------- 3
二、 抗氧化劑-------------------------------------------------- ----- 4
三、 酚類化合物之類黃酮---------------------------------------- 8
四、 類黃酮在植物中的分布------------------------------------17
五、 類黃酮的生物利用性功能-------------------------------- 18
六、 類黃酮抗氧化的相關研究-------------------------------- 21
七、 試驗植物----------------------------------------------------- 25
第參章 試驗材料與方法---------------------------------------------------- 32
一、抗氧化試驗實驗架構-------------------------------------- 32
二、植物來源----------------------------------------------------- 33
三、抗氧化試驗材料-------------------------------------------- 33
(一) 化學試藥----------------------------------------------- 33
(二) 實驗儀器----------------------------------------------- 33
四、測定項目----------------------------------------------------- 34
(一) 清除α, α-diphenyl-β-picrylhydrazyl
( DPPH)自由基試驗-------------------------------- 34
(二) 螯合亞鐵離子能力---------------------------------- 34
(三) 硫氰酸鐵法------------------------------------------- 34
(四) TEAC總抗氧化能力法---------------------------- 35
(五) 還原力測定------------------------------------------- 35
(六) 總酚類化合物含量測定---------------------------- 35
(七) 類黃酮含量測定------------------------------------- 36
(八) 抗壞血酸含量測定---------------------------------- 36
五、統計分析---------------------------------------------------- 36
第肆章 結果------------------------------------------------------------------ 37
一、園藝植物酸性甲醇萃取物之抗氧化物質分析------- 37
二、園藝植物酸性甲醇萃取物清除DPPH自由基
能力---------------------------------------------------------- 39
三、園藝植物酸性甲醇萃取物其螯合亞鐵能力---------- 41
四、硫氰酸鐵法模擬脂質過氧化系統下之24、48
與72小時--------------------------------------------------- 41
五、園藝植物酸性甲醇萃取物之還原力------------------- 42
六、園藝植物酸性甲醇萃取物之總抗氧化能力---------- 42
第伍章 討論------------------------------------------------------------------ 49
一、抗氧化萃取物物質分析(類黃酮含量、抗壞血酸
含量與總酚類含量)--------------------------------------- 49
二、酸性甲醇萃取物清除DPPH自由基能力------------ 50
三、酸性甲醇萃取物螯合亞鐵離子能力------------------ 53
四、酸性甲醇萃取物硫氰酸鐵法(thiocyanate method)-- 54
五、酸性甲醇萃取物還原力---------------------------------- 56
六、TEAC總抗氧化能力之測定---------------------------- 57
第二部分 園藝植物酸性甲醇萃取物之抑菌能力
第陸章 文獻回顧----------------------------------------------------------- 60
一、防腐劑(抗菌劑)的特性---------------------------------- 60
(一) 酚類與酚類化合物--------------------------------- 61
(二) 重金屬及鹽類--------------------------------------- 61
(三) 鹵素--------------------------------------------------- 61
(四) 過氧化物--------------------------------------------- 61
(五) 無機酸及鹽類--------------------------------------- 62
(六) 有機酸------------------------------------------------ 62
(七) 氣體-------------------------------------------------------- 62
(八) 酒精-------------------------------------------------------- 62
(九) 糖----------------------------------------------------------- 62
(十) 醛類-------------------------------------------------------- 63
(十一) 抗生素-------------------------------------------------- 63
(十二) 第四胺化物-------------------------------------------- 63
(十三) 類黃酮-------------------------------------------------- 63
(十四) 咖啡因-------------------------------------------------- 64
(十五) 羥肉桂酸衍生物-------------------------------------- 64
(十六) 茶鹼與可可鹼----------------------------------------- 64
二、食品保存劑的特性-------------------------------------------- 64
三、食品微生物----------------------------------------------------- 66
(一) 李斯特菌(Listeria monocytogenes)------------------- 66
(二) 綠膿桿菌(Pseudomonas aeruginosa)----------------- 68
(三) 金黃色葡萄球菌(Staphylococcus aureus)----------- 69
(四) 沙門氏桿菌(Salmonella typhimurium)--------------- 71
(五) 大腸桿菌(Escherichia coli)---------------------------- 72
四、類黃酮抗菌研究----------------------------------------------- 73
第柒章 試驗材料與方法------------------------------------------------------ 76
一、抑菌試驗實驗架構-------------------------------------------- 76
二、抑菌試驗材料-------------------------------------------------- 77
(一) 抑菌物質成分製備------------------------------------- 77
(二) 實驗材料儀器------------------------------------------- 77
(三) 菌種來源------------------------------------------------- 77
三、培養基與配方------------------------------------------------- 78
四、生菌數測定---------------------------------------------------- 79
五、實驗方法------------------------------------------------------- 79
(一) 濾紙擴散法--------------------------------------------- 79
(二) 本次試驗各菌株之生菌數--------------------------- 79
六、測定項目------------------------------------------------------- 80
(一) 各式樣品原始濃度對各菌種之抑菌活性影響--- 80
(二) 不同酸鹼值對抑菌活性性質之影響---------------- 80
(三) 不同濃度對抑菌活性性質之影響------------------- 80
七、統計分析-------------------------------------------------------- 80
第捌章 結果--------------------------------------------------------------------- 81
一、不同植物的酸性甲醇萃取物其抑菌活性---------------- 81
二、不同濃度之酸性甲醇萃取物抑菌效果------------------- 81
(一) 園藝植物酸性甲醇萃取物於P. aeruginosa------ 81
(二) 園藝植物酸性甲醇萃取物對於
L. monocytogenes抑菌活性之影響---------------- 87
(三) 園藝植物酸性甲醇萃取物對於E. coli與
S. typhimurium抑菌活性之影響------------------- 87
(四)  園藝植物酸性甲醇萃取物對S. aureus抑菌
     活性之影響------------------------------------------- 88
三、不同酸鹼值對抑菌活性之影響
(一) 不同酸鹼值物於P. aeruginosa抑菌活性
之影響------------------------------------------------- 93
(二) 園藝植物酸性甲醇萃取物其不同酸鹼值,對
於S. typhimurium抑菌活性之影響-------------- 95
(三) 園藝植物酸性甲醇萃取物其不同酸鹼值,對
於S. aureus、E. coli與L. monocytogenes抑菌
活性之影響------------------------------------------- 95
四、抑菌與靜菌作用試驗---------------------------------------100
第玖章 討論------------------------------------------------------------------- 102
第拾章 總結------------------------------------------------------------------- 106
第拾壹章 參考文獻---------------------------------------------------------- 108
作者簡介----------------------------------------------------------------------- 118





圖表目錄
頁次
圖1. 類黃酮的生合成途徑------------------------------------------------- 12
圖2. 茶中的兒茶素化學結構---------------------------------------------- 25
圖3. 園藝植物酸性甲醇萃取物之硫氰酸鐵法-24小時-------------- 44
圖4. 園藝植物酸性甲醇萃取物之硫氰酸鐵法-48小時-------------- 45
圖5. 園藝植物酸性甲醇萃取物之硫氰酸鐵法-72小時-------------- 46
圖6. 園藝植物酸性甲醇萃取物之還原力------------------------------- 47
圖7. 園藝植物酸性甲醇萃取物(TEAC)總抗氧化能力之測定------ 48
圖8. 不同植物的酸性甲醇萃取物於平板上其抑菌活性之比較---- 82


表1. 類黃酮在一般食品分布的情形-------------------------------------- 15
表 2. 食用類黃酮來源與抗氧化維生素的總抗氧化活性-------------- 16
表3. 色層分析法與分光光譜檢分析Lavandula和Sabaudia中
的類黃酮----------------------------------------------------------------- 27
表4. 各式樣品其總酚類、類黃酮含量與抗壞血酸含量-------------- 38
表5. 園藝植物酸性甲醇萃取物清除DPPH自由基能力-------------- 40
表6. 園藝植物酸性甲醇萃取物其螯合亞鐵能力----------------------- 43
表7. 不同植物的酸性甲醇萃取物其抑菌活性之比較----------------- 85
表8. 園藝植物酸性甲醇萃取物其不同濃度
對Pseudomonas aeruginosa抑菌活性之影響--------------------- 86
表9. 園藝植物酸性甲醇萃取物其不同濃度
對Listeria monocytogenes抑菌活性之影響----------------------- 89
表10. 園藝植物酸性甲醇萃取物其不同濃度
對Escherichia coli抑菌活性之影響------------------------------- 90
表11. 園藝植物酸性甲醇萃取物其不同濃度
對Salmonella typhimurium抑菌活性之影響--------------------- 91
表12. 園藝植物酸性甲醇萃取物其不同濃度
對Staphylococcus aureus抑菌活性之影響----------------------- 92

表13. 園藝植物酸性甲醇萃取物其不同酸鹼值
對Pseudomonas aeruginosa抑菌活性之影響------------------------ 94
表14. 園藝植物酸性甲醇萃取物其不同酸鹼值
對Salmonella typhimuriu抑菌活性之影響---------------------------- 96
表15. 園藝植物酸性甲醇萃取物其不同酸鹼值
對Staphylococcus aureus抑菌活性之影響--------------------------- 97
表16. 園藝植物酸性甲醇萃取物其不同酸鹼值
對Escherichia coli抑菌活性之影響------------------------------------- 98
表17. 園藝植物酸性甲醇萃取物其不同酸鹼值
對Listeria monocytogenes抑菌活性之影響---------------------------- 99
表18. 園藝植物酸性甲醇萃取物對試驗菌株之抑菌或靜菌作用--------- 101
尤新輝 (1997)簡介茶多元酚成分之機能性及其應用。食品工業月刊
29(3):10-18。
王有忠 (1996) 食品添加物。華香園出版社。台北。
王西華、王進琦 (1999) 食品微生物學。藝軒圖書出版社。台北。
石碧、狄莹(2000)植物多酚。科學出版社。北京。
朱燕華 (1998) 類黃酮之介紹。食品工業月刊,30(9):1-5。
吳定峰、丘志威(2003)食品微生物學精要。藝軒圖書出版社。台北。
郁凱衡 (1992) 酚類抗氧化劑(下)—天然類。食品資訊。18-27。
陳正芸 (1989) 油脂色素對其品質之影響(上)。食品工業。21(6):29-38。
陳如茵 (2000)食品之氧化控制及抗氧化成分。科學與技術 32(8):
43-50。
陳怡如 譯(2002) 芳香草藥。貓頭鷹出版社。台北。
陳惠英、顏國欽(1998)自由基、抗氧化防禦與人體健康中華民國營養學會雜誌 23 (1):105-121。
陳豐村 編譯 (1977)食品微生物學。 合記圖書出版社。台北。
黃涵、洪立(1988)台灣蔬菜彩色圖說。豐年社。台北。
張仁福 (1997)環境微生物學。文京圖書有限公司。台北。
張為憲(1992)食品化學。華香園出版社。台北。
蔡光超 等(1987)醫用微生物學(上冊)。藝軒圖書出版社。台北。
蔡碧仁(1995)洛神葵在採收後處理乾燥加工及貯存期間褐變之探討。國立中興大學食品科學研究所博士論文。
薛聰賢(1994)家庭園藝第六輯。農學社。新店。
劉伯康、陳惠英、顏國欽 (1999)數種傳統食用植物甲醇萃取物抗氧化性之研究。中國農業化學會誌 37(1):105-116。
錢明賽(1998)蔬果中之抗氧化物質。食品工業月刊 30(8):21-31。
臺南區農業改良場 http://www.tndais.gov.tw/press/88/8824.htm
Acker, F. A. A., O. Schouten, G. R. M. M. Haenen, W. J. F. van der Vijgh, and
A. Bast (2000) Flavonoids can replace α-tocopherol as an antioxidant. FEBS Letters 473: 145-148.
Alcaráz, L. E., S. E. Blanco, O. N. Puig, F. Tomás,and F. H. Ferretti(2000)
Antibacterial Activity of Flavonoids Against Methicillin -resistant Staphylococcus aureus strains. J. Theor. Biol. 205:231-240.
Alexander, S. K., D. Strete, and M. J. Niles (2004) Assessing antibiotic effeciveness : The Kirby-Baner Method. 185-190. In : Laboratory Exercises in Organismal and Molecular Microbiology. Boston.
Areias, F., P. R. P. B. Andrade, F. Ferreres, and R. M. Seabra (2000)
Flavonoids and phenolic acids of sage:influence of some agricultural
factors. J. Agric Food. Chem. 48: 6081-6084
Arts, M. J. T. J., G. R. M. M. Haenen, H. P. Voss, and A. Bast (2004)
Antioxidant capacity of reaction products limits the applicability of the Equivalent Antioxidant Capacity (TEAC) asay. FoodChemTox. 45-49. FoodChemTox. 32(7) : 671-693.
Aruoma, O. I., M. Whiteman, T. G. England, and B. Halliwell (1997)
Antioxidant Action of Ergothioneine: Assessment of Its Ability to Scavenge Peroxynitrite. Biochem. Biophys. 231: 389–391.
Aruoma, O. I., T. Bahorun, and L. S. Jen (2003) Neuroprotection by bioactive components in medicinal and food plant extracts. Mutat. Res 544: 203-215.
Astrog, P. (1997) Food carotenoids and cancer prevention: An overview of current research. Trends in Fd Sci & Tech. 8 (12) : 406-413.
Báez, D. H., C. de los Ríos, O. Crescente., and A. Caserta (1998) Antibacterial and chemical evaluation of Chromolaena moritziana. J. Ethnopharm. 59: 203-206.
Basile, A., S. Giordano, J. A. L. Sáez, and C. Cobianchi (1999) Antibacterial avtivity of pure flavonoids isolated from mosses. Phytochemistry. 52: 1479-1482.
Blank, V. C., C. Poli, M. Mariel, and L. P. Roguin (2003)Antiproliferative activity of flavonoids and related compounds: additive effect of interferon-α2b. Bioorg. Med. Chem. Lett. 14: 133-136.
Boss, P. K., C. Davies, and S. P. Robinson (1996) Analysis of the expression of anthocyanidin pathway genes in developing Vitis Vinifera L. cv. Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 111: 1059-1066.
Brand-Williams, W., M. E. Cuvelier, and C. Berset (1995) Use of A free radical method to evaluate antioxidant activity. Lebensm-Wiss. U. Technol. 28:25-30.Breimer, I. H. 1990. Molecular mechanisms of oxygen radical carcinogenesis and mutagensis. The role of DNA base damge. Molecular Carcinogenesis 3: 188-197.
Branen, A. C (1975) Toxicology and biochemistry of butylated hydroxyanisole hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63.
Brouillard, R. (1988) Flavonoids and flower color. 525-538. In:J. B. Harborne (eds.) The flavonoids:Advances in research since 1980. Chapman and Hall. London.
Buchanan, R. L., D. G. Hoover, and S. B. Jones (1983) Caffeine inhibition of aflatoxin production; Mode of action. Appl. Environ. Microbiol. 46: 1193.
Cao, G.., E. Sofic, and R. L. Prior (1997) Antioxidant and proxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol . Med. 749-760.
Chevollesu, S., J. F. Mallet, A. Debal, and E. Ucciani (1993) Atioxidant activity of mediterranean plant leaves: Occurrence and antioxidative importance of α-tocoperol. J. Am. Oil. Chem. Soc. 70 (8): 807-809.
Davidson, P. J., and M. E. Parish (1981)Methods for testing the efficacy of food antimicrobials. Food Techenol. 1: 148-155.
Davies, A. J., and G. Mazza (1993) Copigmentation of simple and acylated anthocyanins with colorless phenolic compounds. J. Agric. Food Chem. 41: 716-720.
Dinis, T. C. P., V. M. C. Maderia, and L. M. Almeida (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-amino salicylate as inhibitors of membrane lipid peroxidation and as peroxyl radical scavenqers. Arch. Biochem. Biophys. 315: 161-169.
Ewald, C., S. F. Moding, K. Johansson., I. SjÖholm, and B. Ǻkesson (1999) Effect of processing on major flavonoids in processed onions, green beans, and peas. Food Chem. 64: 231-235.
Folyd, R. A . (1990) The role of oxygen-free radicals incarcinogenesis and
brain ischemia. FASEB J. 4: 2587-2597.
Fossen, T., A. T. Pedersen, and Ø. M. Andersen (1998) Flavonoids ftom red onion (Allium cepa). Phytochemistry 62: 281-285.
Gardner, P. T., T. A. C. White, D. B. McPhail, and G. G. Duthie (2000)
The relative contributions of vitamin C, carotenoids and phenolics to
the antioxidant potential of fruit juices. Food Chem. 68: 471-474.
Gordon, M. H . (1990) The mechanism of antioxidant action in vitro. Ch. 1,
in Food Antioxidants, B. J. F. Hudson (Ed.). 1-18. ElsevierApplied
Science. London and New York.
Gould, D. G. W. (1996) Industry perspectives on the use of natural antimicrobials and nhibitiors for food applications. J. Food Protec. (supplement): 82-86.
Guendez, R., S. Kallithraka, D. P. Makris, and P. Kefalas (2005) Determination of low molecular weight polyp henolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity. Food Chem. 89 : 1-9.
Gutteridge, J. M. (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41: 1819-1828.
Harborne, J. B. (1967) Comparative biochemistry of the flavonoids. Academic Press: New York.
Harborne, J. B. (1989) General procedures and measurement of total phenolics. 1-28. In:Harborne, J. B. Method in plant biochemistry. Vol. 1. Harborne, J. B. ed. Academic Press. USA.
Heijnem, C. G. M., G. R. M. M. Haenen, J. A. J. M. Vekemans, and A. Bast (2001) Peroxynitrite scavenging of flavonoids: structure activity
relationship. Environ. Toxicol. Pharmacol. 10: 199-206.
Heim, K. E., A. R. Tagliaferro, and D. J. Boblia (2002) Flavonoid
antioxidant : chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13: 572-584.
Hollman, P. C. H., M. G. L. Hertog, and M. B, Katan (1996) Analysis and health effects of flavonoids. Food Chem. 57: 43-46.
Idaka, E., H. Yamakita, T. Ogaea, T. Kondo, M. Yamamoto, and T. Goto (1987) Structure of three diacylated anthocyanins isolated from red
cabbage, Brassica oleraces. Chem. Lett. 1213-1216.
Jacob, R. A. (1994) Nutrition, health and antioxidants. INFORM. 5: 1271-1275.
Jia, Z. S., M. C. Tang, and J. M. Wu (1999) The determination of flavonoid contents in mulberry and their scavenging effects on radicals . Food Chem. 64: 555-559.
Katalini , V., M. Mios, D. Modum, I. Musi , and M. Boban (2004) Antioxidant effectiveness of selested wines in comparison with (+)-catechin. Food Chem. 86: 593-600.
Kittes, D. (1997) An evealuation of the multiple effects of the antioxidant vitamins. Treands Food Sci & The. 8 (6): 198-203.
Kramer, C. M., R. T. N. Prata, M. G. Willits., V. D. Luca., J. C. Steffens, and G. Graser (2003) Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry 64: 1069-1076.
Kuti, J. O. (2004) Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem. 85: 527-533.
Lu, T. S., N. Sation, M. Yokoi, A. Shigihara, and T. Honda (1992) Acylated peonidin glycosides in the violet-blue cultivars of Pharbitis nil. Phytochemistry 31(2) : 659-663.
Martini, N. D., D. R. P. Katerere, and J. N. Eloff (2004) Biological activity of five antibacterial flavonoids from Combretum erythrophllu
(Combretaceae). J. Ethnopharm. 93: 207-212.
Mattivi, F., F. Reniero, and S. Korhammer (1995) Isolation, characterization, and evolution in red wine vinification of resveratro; monomers. J. Agric. Food Chem. 43: 1820-1823.
Meir, S., J. Kanner, B. Akiri, and S. Philosoph (1995)Determination and involvement of aqueous reducing compounds in oxidative defense systems of various sencescing leaves. J. Agric. Food Chem 43 (7):1813-1819.
Mellou, F., D. Lazari, H. Skaltsa, A. D. Tselepis., F. N. Kolisis, and H. Stamatis (2005) Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity. J. Biotechnol. 116: 295-304.
Mitsuda, Y., K. Yamamodo (1996) Antioxidative action of indole compounds during the autooxidation of linoleic acid. Eiyoto. Shokruyo 19: 210-214.
Nakajima, N., K. Ishiara, H. Hamada, S. I. Kawabe, and T. Furuya (2000) Regioselctive Acylation of Flavonoid Glucoside with Aromatic Acid by an Enzymatic Reaction System From Cultured Cells of Ipomoea batatas. J. Biosci. Bioeng . 90 (3): 347-349.
Nessa, F., Z. Ismail, N. Mohamed, and M. R. H. M. Haris (2004) Free radical-scavenging activity of organic extracts and of pure flavonoids of Blumea balsamifera DC leaves. Food Chem. 88 : 243–252.
Ng, T. B., J. M. L. Ling, Z. T. Wang, J. N. Cai, and G. J. Xu (1996) Examination of coumarins, flavonoids and polysaccharopeptide for antibacterial activity. Gen. Pharmac 27 (7) : 1237-1240.
Odake, K., N. Terahara, N. Saito, K. Toki, and T. Honda (1992) Chemical structures of two anthocyanins from purple sweet potato, Ipomoea Batatas. Phytochemistry 31(6): 2127-2130.
Oyaizu, M. (1986) Antioxidative activity of browning products of glucosamine fractionates by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi (35) : 771-775.
Padmavati, M., N. Sakthivel, K. V. Thara, and A. R. Reddy (1997)
Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry 46 (3) : 499-502.
Pen, Z. F., S. Dieter, A. Baumert, R. Subramaniam, N. K. Goh, T. F. Chia, S.
N. Tan, and L. S. Chia (2003) Atioxidant flavonoids from leaves of
Polygonum hydropiper L. Phytochemistry 62:219-228. Peterson, D. M (2001) Oat Antioxidants. J. Cere. Sci. 33: 115-129.
Pirhonen, M., D. Flego, R. Heikinheimo, and E. T. Palva (1993) A smalldiffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. Embo. J. 12: 2467-2476.
Pomilio, A. B., and J. F. Sproviero (1972) Acylated anthocyanins from Ipomoea cairica. Phytochemistry 11: 1125-1128.
Pouget , C., F. Lauthier, A. Simon, C. Fagnere, J. P. Basly, C. Delage, and A. J. Chulia (2001) Flavonoids: Structural Requirements for Antiproliferative Activity on Breast Cancer Cells. Bioorg. Med. Chem. Lett. 11 : 3095–3097.
Quarenghi1, M. V., M. L. Tereschuk1, M. D. Baigorib, and L. R. Abdala1 (2000) Antimicrobial activity of flowers from Anthemis cotula. Fitoterapia 71: 710-712.
Ramarathnam, N., T. Osawa, H. Ochi, and S. Kawakish (1995) The contribution of plant food antioxidants to human health. Trends Food Sci. Technol. 6: 75-82.
Ramesh, N., M. B. Viswanathan, A. Saraswathy, P . Brindha, K . Balakrishna, P. Lakshmanaperumalsamy, and A . Patra (2001) Antibacterial activity of luteoforol from Bridelia crenulata. Fitoterapia 72: 409-411.
Rice-Evans, C. A., N. J. Miller, and G. Paganga (1996) Structure antioxidant activy relationships of flavonoids and phenolic acids. Free Radic. Biol . Med. 20 (7) : 933-956.
Rice-Evans, C. A., N. J. Miller, and G. Paganga (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci. 2(4) : 152-159.
Rocha, L., A. Marston, O. Potterat, M. A. C. Kaplan, H. S. Evans, and K. Hostettmann (1995) Antibacterial phloroglucinols and flavonoids from Hypericum brasiliense. Photochemistry 40 (5) : 1447-1452.
Ross, J. A., C. M. Kasum (2002) Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annu. Rev. Nutr. 22: 19-34.
Saito, N., K. Abe, T. Honda, C. F. Timberlake, and P. Bridle (1985) Acylated delphindin glucosides and flavonols from Clitoria ternatea. Phytochemistry 24(7): 1583-1586.
Sato, Y., S. Suzaki, T. Nishikawa, M. Kihara, H. Shibata, and T. Higuti (2000) Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against Methicillin-resistant Staphylococcus aureus. J. Ethnopharm. 72: 483-488.
Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura (1992) Antioxidative properties of xanthan on the autoxidantion of soybean oil in cyclodextrin. J. Agri. Food Chem. 40: 945-948.
Shirley, B. W. (1996) Flavonoid biosynthesis: ‘new’ functions for an ‘old’ pathway. Trends Plant Sci. Rev. 377-382.
Shui, G., L. L. Peng (2004) An improved method for the analysis of major antioxidants of Hibiscus esculentus Linn. J. Chromatogr. 1048: 17-24.
Skaper, S. D., M. Fabris, V. Ferrari, M. D. Carbonare, and A. Leon (1997) Quercetin protects cutaneous tissue-assoriated cell types including sensory neurons from oxidative stress induced by glutathione deleption : cooperative effects of ascorbic acid. Free Rad. Biol. Med. 22: 669-678.
Sonoda, M., T. Nishiyama, Y. Matsukawa, and M. Moriyasu (2004) Cytotoxic activities of flavonoids from two Scutellaria plants in Chinese mesicine. J. Ethnopharm. 91: 65-68.
Steinberg, F. M. (2003) Cocoa and chocolate flavonoids:Implications for cardiovascular health. JADA. 103: 215-223.
Strack, D. and V. Wray (1993) The anthocyanins. P. 1-20. In:J. B. Harborne, ed. The flavonoids. Chapman and Hall. London.
Suda, I., T. Oki, M. Masuda, and Y. Nishiba (2002) Direct Absorption of acylated anthocyanin in purple-fleshed sweet potato into rats. J. Agric. Food Chem. 55: 1672-1676.
Taga, M. S., E. E. Miller, and D. E. Pratt (1984) Chia seeds as a source of natural lipid antioxidants. J. Am. Oli Chem. Soc. 61(5) : 928-931.
Terahara, N., N. Saito, T. Honda, K. Toki, and Y. Osaima (1990) Acylated anthocyanins of Clitoria ternatea flowers and their acyl moieties. Phytochemistry 29(3): 949-953.
Terahara, N., M. A. Yamaguchi, and T. Honda (1994) Malonylated anthocanins from bulbs of red onion, Allium cepa L. Biosci. Biotech. Biochem. 58(7): 1324-1325.
Terahara, N., M. Oda (1996) Five new anthocyanins, ternatins A3, B4, B3, B2 and D2, from Clitoria ternatea flowers. JNP. 59(2) : 139-144.
Tusda, T., K. Ohshima, S. Kawakishi, and T. Osawa (1996) Oxidation products of cyanidin 3-O-β-D-glucoside with free radical initiator. Lipids 31: 1259-1263.
Upson, T. M., R. J. Grayer, J. R. Greenham, C. A. Williams, F. A. Ghamdi, and F. H. Chen (2000) Leaf flavonoids as systematic charactersin the genera Lavandula and Sabaudia. Biochemsyseco. 28 : 991-1007.
Viviana, C. B., C. Poli, M. Marder, and L. P. Roguin (2004) Antiproliferative activity of various flavonoids and related compounds: additive effect of interferon-α2b. Bioorg. Med. Chem. Lett. 14 : 133–136.
Wang, H., G. Cao, and L. R. Prior (1997) Oxygen gadical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45: 304-309.
Wang, H. G. J. P., K. Helliwell (2000) Tea favonoids:their functions, utilisation and analysis. Trends Food Sci. Technol. 11: 152-160.
Weidenborner, M., H. C. Jha (1994) Antifungal activity of flavonoids in relation to degree og hydroxylation, methoxylation and glycosidation. Acta Hort. 381: 702-709.
Wiel, A. V. D., P. H. M. V. Golde, and H. C. Hart (2001) Blessings of the grape. Eur. J. Inorg. Med. 12: 484-489.
Weis, J., and H. P. R. Seeliger (1975) Incidence of Listeria monocytogenes in nature. Appl. Microbiol. 30: 29-32.
Yamaguchi, R., M. A. Tatsumi, K. Kato, and U. Yoshimisu (1998) Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsions. Agric. Biol. Chem. 52: 849-850.
Yoshida, T. K., M. Y. Sato, and K. Hirai (1998) Sources and routes of contamination of raw milk with Listeria monocytogenes and its control. J. Vet. Med. Science. 60: 1165-1168.
Zhishen, J., T. Mengcheng, and W. Jianming (1999) The determination of flavonoid contents in mulberry ane their scavenging effects on superoxide radicals. Food Chem. 64: 555-559.
Zin, Z. M., A. A. Hamid, and A. Osman (2002) Antioxidative activity of extracts from Mengkudu (Morinda citrifolia L.) root, fruit and leaf. Food Chem. 78: 227-231.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔