# 臺灣博碩士論文加值系統

(44.200.27.215) 您好！臺灣時間：2024/04/15 04:13

:::

### 詳目顯示

:

• 被引用:3
• 點閱:753
• 評分:
• 下載:101
• 書目收藏:0
 本研究針對圓環旋轉壓縮成形，主要以切片法建立理論解析模式，配合商用有限元素軟體進行模擬，最後以實驗加以驗證。利用切片法建立兩種解析模式，模式Ⅰ－假設模具和圓環為庫侖摩擦(τ=μp)，模式Ⅱ－假設為定剪摩擦(τ=mk)。因為圓環在旋轉時被壓縮，摩擦剪應力作用於離半徑方向α角之方向上，因此解析模式將比沒有旋轉之壓縮成形較為複雜。在金屬成形過程中，摩擦對於模具的壽命、產品的品質有重要的影響。過度的摩擦將導致熱產生，並造成模具磨耗而縮短壽命。在本文中分別探討庫侖摩擦和定剪摩擦兩種模式之壓縮特性，探討摩擦係數（或摩擦因子）、旋轉角速率、幾何外觀比等，對於壓縮特性之影響。並利用有限元素法模擬圓環旋轉壓縮成形，以獲得壓下率－內徑縮減率之摩擦校正曲線圖，並以實驗方法進行壓縮試驗，並將實驗所得之內徑縮減率對照摩擦校正曲線圖，以求得圓環旋轉壓縮時之摩擦因子。並藉由切片法理論分析、DEFORM模擬分析及實驗結果相互驗證，以驗證旋轉壓縮成形之可行性與實用性。
 This study aims at the rotating compression forming by constructing the theoretically analytical models based on the slab method, and performing simulation with a commercial FEM software. The verification has been done by conducting experiments. Two analytical models have been established with Coulomb friction between the die and ring assumed as Model I, and with constant shear friction assumed as Model II, respectively. The frictional shear stress acts on a certain angle from the radial direction because the ring is compressed with rotating. Therefore, the analytical models with rotating are more complicated than those without rotating. In metal forming process, the effects of friction on the die life and the product quality are very important. Excessive friction will induce the heat and hence shorten the die life due to the increase of wear rate. The compression characteristics of Coulomb friction and constant shear friction models are explored, respectively. Furthermore, the effects of frictional coefficient (or frictional factor), rotating angular speed and aspect ratio on the compression characteristics are also investigated. The simulation on the rotating compression forming of ring has been performed by an FEM software, thus the friction calibration curves of reduction versus inner radius reduction are obtained. In addition, a set of the experiments is performed to find the inner radius reduction in order to compare with the corresponding friction calibration curve. Finally, the frictional factor in the rotating compression of ring is yielded. The feasibility and practicability in the rotating compression of ring can be verified by performing the comparison on the theoretical analysis with the slab method, the simulation analysis with DEFORM software, and experimental results.
 中文摘要……………………………………………………………….……Ⅰ 英文摘要…………………………………………………………………….Ⅱ 誌謝…………………………………...…………………...………...………Ⅲ 目錄………………………………………………………………………….Ⅳ 圖目錄……………………………………………………….………………Ⅶ 表目錄……………………………………………….………………………Ⅹ 第一章 緒論………………………………………….………………………1 1.1 前言…………………………………………………………………1 1.2 塑性加工分析方法…..……………………………………………7 1.2.1上界限法………………….…………………..………………7 1.2.2切片法.………………………………………..………………9 1.2.3下界限法….…………………………………..………………9 1.2.4滑移線場法.…………………………………..………………9 1.2.5有限元素法.....……………………………..………………10 1.2.6能量法….…………………………………..………………10 1.3 研究動機與目的..…………………………………………………11 1.3.1研究動機……………….…………………..………………11 1.3.2研究目的….………………………………..………………13 1.4 文獻回顧………..…………………………………………………13 1.5 本文架構………..…………………………………………………17 第二章 切片法於旋轉壓縮成形之解析………………….………………18 2.1 模式建立..…………………………………………………………18 2.2 庫侖摩擦解析模式之推導（模式I）…..…………………………21 2.2.1 力平衡方程式..………………………………………………21 2.2.2 降伏條件……………..………………………………………22 2.2.3 邊界條件………..………………………………..…………23 2.2.4 比壓縮壓力分佈..………………………………..…………24 2.2.5 徑向應力……..…..………………………………..…………24 2.2.6 界面比剪應力…..………………………………..…………25 2.2.7 最大壓縮壓力位置………………………………..…………25 2.2.8 壓縮負荷..………..………………………………..…………25 2.2.9 平均壓縮壓力..…..………………………………..…………26 2.3 定剪摩擦解析模式之推導（模式II）….…………………………26 2.3.1 邊界條件………..………………………………..…………27 2.3.2 比壓縮壓力分佈..………………………………..…………28 2.3.3 徑向應力……..…..………………………………..…………28 2.3.4 界面比剪應力…..………………………………..…………29 2.3.5 最大壓縮壓力位置………………………………..…………29 2.3.6 壓縮負荷..………..………………………………..…………29 2.3.7 平均壓縮壓力..…..………………………………..…………30 2.4 庫侖摩擦解析結果（模式I）………….…………………………30 2.5 定剪摩擦解析結果（模式II）………….…………………………39 2.6 結語………………………….………….…………………………45 第三章 有限元素模擬…………………….……..…………………………46 3.1 DEFORM有限元素軟體簡介…......……………………………46 3.1.1 簡介.….…………………………..…………………………46 3.1.2 DEFORM的使用流程….….…….…………………………49 3.2 模擬模式之建構……………...………...…………………………51 3.2.1 假設條件…………………………...………...………………51 3.2.2 模擬設定……………………………......……………………51 3.3 DEFORM模擬分析.……...…………………...…………………53 第四章 旋轉壓縮成形實驗與分析……………………...…………………59 4.1 旋轉壓縮成形機簡介……………………………………………59 4.2旋轉壓縮成形機機構與組件………………………..……………62 4.3 旋轉壓縮成形實驗…………………………………..……………63 4.3.1 圓環壓縮試片製作………….………………….……………63 4.3.2 圓環旋轉壓縮實驗………….…….…………………………64 4.4 實驗結果……...……………………….….………………………66 第五章 結論與建議.……………………………………………..…………76 5.1 結論……………………………………………………..…………76 5.2 建議……………………………………………………..…………77 參考文獻………………………………………………………….…………81 符號索引…………………………………………….………………………85 附錄A 期刊論文.………………………………………………...….……87 附錄 B 會議論文…..……………………………………………...….……93 作者簡介…………………………………………………………...………100 圖目錄 圖1-1 工件側表面鼓起變形……………...………………………………12 圖2-1 旋轉壓縮成形示意圖……………...………………………………19 圖2-2 圓環在zone I之應力元素圖 …………………………20 圖2-3 圓環在zone II之應力元素圖 …………………………20 圖2-4 在庫侖摩擦下，圓環在不同角速率下的應力分佈………………32 圖2-5 在庫侖摩擦下，不同摩擦係數下的應力分佈…….………………33 圖2-6 在庫侖摩擦下，不同外徑/高度比下的應力分佈.………………...34 圖2-7 在庫侖摩擦下，不同外徑/內徑比下的應力分佈….……………...35 圖2-8 在庫侖摩擦下，不同外徑/高度比，角速率變化對中立點之影響.………………………………………………………………...36 圖2-9 在庫侖摩擦下，不同外徑/內徑比，高度變化對壓縮負荷之影響.………………………………………..………………………...36 圖2-10 在庫侖摩擦下，不同旋轉角速率，外徑變化對壓縮負荷之影響..………………………………………..………………………...37 圖2-11 在庫侖摩擦下，不同旋轉角速率，內徑變化對壓縮負荷之影響..………………………………………..………………………...37 圖2-12 在庫侖摩擦下，不同旋轉角速率，高度變化對壓縮負荷之影響..………………………………………..………………………...38 圖2-13 在定剪摩擦下，圓環在不同角速率下的應力分佈..……………...40 圖2-14 在定剪摩擦下，摩擦因子對各種應力分佈之影響..……………...41 圖2-15 在定剪摩擦下，不同外徑/高度比下的應力分佈.………………...41 圖2-16 在定剪摩擦下，不同外徑/內徑比下的應力分佈.………………...42 圖2-17 在定剪摩擦下，不同外徑/高度比，角速率變化對中立點之影響…………………………………………………………………42 圖2-18 在定剪摩擦下，不同外徑/內徑比，高度變化對壓縮負荷之影響…………………………………………………………………43 圖2-19 在不同摩擦因子下，材料密度對壓縮負荷之影響...……………43 圖2-20 在定剪摩擦下，不同旋轉角速率，外徑變化對壓縮負荷之影響..………………………………………..………………………...44 圖2-21 在定剪摩擦下，不同旋轉角速率，內徑變化對壓縮負荷之影響..………………………………………..………………………...44 圖2-22 在定剪摩擦下，不同旋轉角速率，高度變化對壓縮負荷之影響..………………………………………..………………………...45 圖3-1 圓環旋轉壓縮成形之有限元素模擬圖……………...……………52 圖3-2 無旋轉時，摩擦因子對壓縮負荷之影響 ………………...54 圖3-3 有旋轉時，摩擦因子對壓縮負荷之影響 ......54 圖3-4 考慮有無旋轉時，摩擦因子對壓縮負荷之影響……………...55 圖3-5 無旋轉時，在不同初始高度下壓縮負荷之比較.....................…...55 圖3-6 有旋轉時，在不同初始高度下壓縮負荷之比較.....................…...56 圖3-7 當 時，在不同旋轉角速率下壓縮負荷之比較…...……56 圖3-8 當 時，在不同旋轉角速率下壓縮負荷之比較..………57 圖3-9 當 時，在不同旋轉角速率下壓縮負荷之比較...………57 圖3-10 當 時，在不同旋轉角速率下壓縮負荷之比較...………58 圖4-1 旋轉壓縮成形機…………………………………………...………60 圖4-2 旋轉壓縮成形機主體結構示意圖………………………...………61 圖4-3 圓環試件示意圖…………………………………………...………64 圖4-4 圓環旋轉壓縮成形( ， ， )....…65 圖4-5 圓環旋轉壓縮成形( ， ， )…..65 圖4-6 圓環旋轉壓縮成形( ， ， )…..65 圖4-7 圓環旋轉壓縮成形( ， ， )…..66 圖4-8 在定剪摩擦下， 之摩擦校正曲線..……..…….68 圖4-9 當 時，切片法理論分析、DEFORM模擬與實驗結果之壓縮負荷比較（ ）……………………..……………………….69 圖4-10 當 時，切片法理論分析、DEFORM模擬與實驗結果之壓縮負荷比較（ ）………………...……………….………...69 圖4-11 當 時，切片法理論分析、DEFORM模擬與實驗結果之壓縮負荷比較（ ）…………………………...………………..70 圖4-12 當 時，切片法理論分析、DEFORM模擬與實驗結果之壓縮負荷比較（ ）..……...…………………….……………...70 圖4-13 當 時，切片法理論分析、DEFORM模擬與實驗結果之壓縮負荷比較（ ）…………………….……………...71 圖4-14 當 時，切片法理論分析、DEFORM模擬與實驗結果之壓縮負荷比較（ ）……………...……….…………..71 圖4-15 當 時，切片法理論分析、DEFORM模擬與實驗結果之壓縮負荷比較（ ）………………..……….………..72 圖4-16 當 時，切片法理論分析、DEFORM模擬與實驗結果之壓縮負荷比較（ ）..………………………...………72 圖4-17 當 時，旋轉與否之實驗壓縮負荷比較….……......……73 圖4-18 當 時，旋轉與否之實驗壓縮負荷比較….……......……73 圖4-19 當 時，旋轉與否之實驗壓縮負荷比較….……......……74 圖4-20 當 時，旋轉與否之實驗壓縮負荷比較….……......……74 圖4-21 無旋轉時，在不同初始高度下，實驗壓縮負荷之比較….......……75 圖4-22 有旋轉時，在不同初始高度下，實驗壓縮負荷之比較….......……75 表目錄 表3-1 圓環旋轉壓縮之模擬分析條件…………………………………...52 表4-1 旋轉壓縮成形機主體結構名稱……………………….……….….61 表4-2 圓環試片尺寸…………………………………….………………..63 表5-1 圓環旋轉壓縮成形，考慮庫侖摩擦之公式整理...………………..78 表5-2 圓環旋轉壓縮成形，考慮定剪摩擦之公式整理…...……………..79 表5-3 圓環旋轉壓縮成形，庫侖摩擦之壓縮特性比較...………………..80 表5-4 圓環旋轉壓縮成形，定剪摩擦之壓縮特性比較...………………..80
 [1] 成清吉，2003，「圓柱旋轉壓縮成形理論分析與原型機製作」，碩士論文，國立高雄第一科技大學，高雄。[2] 陳狄成，2003，「應用有限元素法於缺陷板材壓延加工之解析」，博士論文，國立中山大學，高雄。[3] 陳徵君，1996，「非均勻壓縮試驗應力分析」，碩士論文，國立台灣大學，台北。[4] 許燕忠，1999，「孔型壓延加工之有限元素解析」，碩士論文，國立中山大學，高雄。[5] 簡文通著，2004，機械製造，全華科技圖書股份有限公司，台北。[6] Alexandrov S., Tzou G.Y., and Hsia S.Y., 2004, A new upper bound solution for a hollow cylinder subject to compression and twist, Journal of Mechanical Engineering Science, Vol. 218, p.369-375.[7] Andersson K., Kiviuori S., and Kortohen A.S., 1996, “Effect of the heat-transfer coefficient in ring-compression tests”, Journal of Materials Processing Technology, Vol. 62, p.10-13.[8] Avitzur B., 1968, “Metal forming: processes and analyses”, p.81-90.[9] Avitzur B., 1968, “Metal forming: processes and analyses”, p.102-111.[10] Douglas J.R. and Altan T., 1975, “Flow stress determination for metals at forging rates and temperatures”, Journal of Engineering for Industry, p.66-76.[11] Dutton R.E., Seetharaman V., Goetz R.I., and Semiatin S.L., 1999, “Effect of flow softening on ring test calibration curves”, Materials Science and Engineering, Vol. A270, p.249-253.[12] Espiga F., Jugo A., and Anza J.J., 1994, “Industrial applications of numerical simulation to the design and optimization of forging process”, Journal Materials Processing Technology, Vol. 45, p.81-86.[13] Ettouney O. and Hardt D.E., 1983, “A method for in-process failure prediction in cold upset forging”, Journal of Engineering for Industry, Vol. 105, p.161-167.[14] Ettouney O. and Stelson K.A., 1984, “A modified slab method for axisymmetric upsetting”, 12th NAMRC SME, p.133-140.[15] Farter J.L. and Penza B.R., 1989, “Predicting fracture in cold upset forging by finite element methods”, Journal of Materials Processing Technology, Vol. 7, p.57-62.[16] Huang M.N., Chen C.J., and Tzou G.Y., 2004, “Study on the twist compression forming based on the upper bound and slab methods”, Precision Machinery and Manufacturing Technology, p.225-233.[17] Huang M.N., and Tzou G.Y., 2002, “Study on compression of a rotating disk considering hybrid friction”, Journal of Materials Processing Technology, Vol.125-126, p.421-426.[18] Huang M.N., and Tzou G.Y., 2004, “New corresponding relationships between frictional coefficient and frictional factor in compression forming of a rotating circular disk”, Key Engineering Materials, Vols. 274-276, p.409-414.[19] Steck E. and Chmid K. S., 1965, “The application of the upper bound principle upon upsetting and forging operation”, Industrie-Anzeiger, Vol. 87, p.1751.[20] Kim H., Sweeney K., and Altan T., 1994, “Applications of computer aided simulation to investigate metal flow in selected forging operations”, Journal of Materials Processing Technology, Vol. 46, p.127-154.[21] Kim Y.H. , Jin Y.E. , Park J.H. , and Lee Y., 2000, “An analysis of the torsional forming process using the dual stream function”, International Conference on Metal Forming, p.741-745.[22] Kim Y.H., Park J.H., and Jin Y.E., 1999, “An analysis of plastic deformation process for twist-assisted upset forging of cylindrical billets”, Int. Confer. on Advances in Materials and Processing Technologies, Vol. 215, p.883-886.[23] Kim Y.H., Park J.H., and Jin Y.E., 1999, “An upper bound analysis for torsional upset forging of cylindrical billets”, Advanced Technology of Plasticity, Vol. I, p.859-864.[24] Lee C.H. and Altan T., 1972, “Influence of flow Stress and friction upon metal flow in upset forging of ring and cylinders”, Journal of Engineering for Industry, p.775-781.[25] Lucchesi M., and Sassu M., 1995, “Energy dissipation of a thin elastoplastic tube under torsion and compression”, Int. Journal Solids Structures, Vol. 32, No. 19, p.2891-2906.[26] Oh S.I., Wu W.T., and Tang J.P., 1992, “Simulations of cold forging process by DEFORM system”, Journal of Materials Processing Technology, Vol. 35, p.357-370.[27] Sofuoglu H. and Rasty J., 1999, “On the measurement of friction coefficient utilizing the ring compression test”, Tribology International, Vol. 32, p.327-335.[28] Tang J.P., Wu W.T., and Walters J., 1994, “Recent development and applications of finite element method in metal forming”, Journal of Materials Processing Technology, Vol. 46, p.117-126.[29] Tzou G.Y., Huang M.N., and Chen C.J., 2002, “An analytical approach to rotating compression forming of circular disk considering constant shear friction”, International Symposium on Plasticity and its Current Applications, p.445-447.[30] Wang J.P., 2001, “A new evaluation to friction analysis for the ring test”, International Journal of Machine Tools & Manufacture, Vol. 41, p.311-324.[31] Xue K.M., Lu Y., Liu H.H., and Zhao X.M., 1993, “Numerical simulation and experimental research into the process of twist-compression forming”, Advanced Technology of Plasticity, Vol. II, p.1065-1070.[32] Xua K., Wang Z., and Lu Y.I., 1997, “FEM analysis of cylinder twist-compression deformation regularity”, Journal of Materials Processing Technology, Vol. 69, p.148-151.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 應用有限元素法於缺陷板材壓延加工之解析 2 非均勻壓縮試驗之應力分析 3 圓柱旋轉壓縮成形理論分析與原型機製作 4 孔型壓延加工之有限元素解析 5 摩擦界面接觸條件對於鍛粗加工變形行為之影響 6 圓柱旋轉壓縮成形之研究 7 六角防緊螺絲頭部鍛造成形之研究 8 應用切片法於非對稱板材軋延之研究 9 定剪摩擦下已結合雙層複合圓環層材旋轉壓縮成形之研究 10 應用Deform 2D/3D有限元素分析軟體於旋轉逆向擠製成形最佳化之研究 11 已結三層複合圓柱旋轉鍛造成形技術之研究 12 軋輥摩擦條件對熱連軋精軋影響之研究 13 已結合雙層複合圓柱旋轉壓縮成形鼓起變形預測與實驗驗證 14 SUS302不銹鋼鑚尾螺絲頭部鍛造 15 六角防緊螺絲頭部鍛造成形之研究

 無相關期刊

 1 圓柱旋轉壓縮成形之研究 2 定剪摩擦下已結合雙層複合圓環層材旋轉壓縮成形之研究 3 旋轉工具於金屬成形之有限元素模擬與應用 4 已結合雙層複合板材引伸成形有限元素模擬分析 5 壓力容器複合端板引伸成形之研究 6 已結合雙層複合圓柱旋轉壓縮成形鼓起變形預測與實驗驗證 7 圓形軸承螺帽多道次鍛造成形之研究 8 SUS302不銹鋼鑚尾螺絲頭部鍛造 9 機車軸承扣件多道次冷鍛成形之探討 10 六角防緊螺絲頭部鍛造成形之研究 11 SUS304不銹鋼壓力容器旋轉成形之研究 12 拖板車扣件製程動態模擬與成形模擬 13 已結三層複合圓柱旋轉鍛造成形技術之研究 14 已結合雙層複合板材非對稱軋延有限元素分析 15 高扭矩車輛扣件多道次鍛造成形模擬及實驗驗證

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室