跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 22:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宜伶
研究生(外文):Yi-Ling Tsai
論文名稱:添加改良劑提升人工濕地土壤固定磷之效率
論文名稱(外文):Improving phosphorus fixation in constructed wetland soil using three amendments
指導教授:許正一許正一引用關係
指導教授(外文):Zeng-Yei Hseu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:81
中文關鍵詞:人工濕地濕地土壤固定改良劑
外文關鍵詞:constructed wetland soilphosphorus fixationalum sludgeoyster shellsoftening tap water crystal
相關次數:
  • 被引用被引用:6
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:3
近年來國內已陸續進行人工濕地處理污水的研究工作,然而人工濕地的土壤性質是影響污染物移除效率的關鍵因素之一,尤其過去人工濕地在磷的去除效率上偏低,因此本研究選用產量大,且富含鐵、鋁或鈣之一般事業廢棄物,即淨水污泥餅、蚵殼粉、淨水軟化碳酸鈣結晶,利用其易與磷結合之特性,做為人工濕地土壤之改良劑,以探討添加這三種改良劑的土壤對磷的固定能力,期望能提升人工濕地對於磷的移除效率,以達到廢棄物資源化再利用之目的。
本研究採用長濱土系砂質壤土作為供試土壤,其為富含石英的酸性土壤,磷固定能力較差,藉由改良劑之添加調整其pH值,並提升土壤磷固定能力。實驗中分別以不同比例之各改良劑添加至土壤中,根據pH值之變化情形,選擇改良劑最適添加比例來進行磷等溫吸附試驗,再由磷等溫吸附試驗結果,進行實驗室規模之人工濕地模擬批次試驗,進流水總磷濃度為200 mg/L,水力停留時間為兩週,而於模擬期間監測出流水總磷及各種陰陽離子濃度。
經添加各比例之改良劑發現,皆能有效提高供試土壤pH值,使其由中酸性轉為弱酸性,而以蚵殼粉及淨水軟化碳酸鈣結晶效果較佳。等溫吸附試驗結果顯示,供試土壤於添加不同比例的各改良劑後,對於磷的固定效能皆有所提升,供試土壤磷最大吸附量為1.97 g/kg,而改良劑最佳添加比例為10%之淨水污泥、2%之蚵殼粉及6%之淨水軟化碳酸鈣結晶,其最大吸附量分別提高至3.78 g/kg、2.71 g/kg和2.75 g/kg。在模擬期間,各處理之人工濕地對於總磷平均去除率分別為淨水污泥58.3 %、蚵殼粉71.3 %、淨水軟化碳酸鈣結晶75.6% ,而蚵殼粉與淨水軟化碳酸鈣結晶處理之濕地出流水總磷濃度主要受到Ca離子濃度所控制。供試土壤之無機磷結合型態以鐵、鋁結合性磷(NaOH-Pi)為主,而易溶性磷(NH4Cl-Pi)所佔比例也高達25%以上,但添加改良劑後,各處理之濕地土壤的無機磷分別在鐵、鋁結合性磷及鈣結合性磷(HCl-Pi)的部分有明顯地增加,易溶性磷的比例也都降至12%以下,而各濕地土壤無機磷結合型態皆以鐵、鋁結合性磷為主,鈣結合性磷次之。
Different strategies of contaminant removal in wastewater had been conducted by constructed wetland. However, the soil proiperties of constructed wetland is crucial in the above processes. Past studies always showed low efficiencies in P removal from constructed wetland for wastewater. Three amendments enriched with Al, Fe or Ca, including waterwater treatment residues (WTR, that is alum sludge), oyster shell (shell) and carbonate crystal derived from softening tap water (crystal), were used to fix P in the constructed wetland soil. The three amendments are nonhazardous wastes but with greatly annual production in Taiwan. The purposes of this study are to explore the fixation capacity of the three amendments, to increase the removal efficiency of P for the constructed wetland and to reuse the wastes as resource.
The Chungpin soil series was selected as as the constructed wetland soil which is an acidic sandy loam and contains large amounts of quartz with low fixation capacity of P (FCP). Therefore we adjusts its pH value and improves its FCP by the amendments. Different application rates of each amendment were used based on the change of pH in the study soil, and the optimum application rate was determined and carried on the isotherm adsorption experiments of P for laboratory-scale incubation. Total phosphorus concentration of the inflow wastewater with 200 mg/L and the hydraulic retention time with 2 weeks were designed. Total P and cation and anion ions were monitored during the period.
The soil pH was clearly increased by adding various proportions of amendments from the moderately acid to weakly acid, however, the crystal as well as the oyster-shell powder had much better effects in pH change than WTR. Additionally, the isothermal adsorption shows that FCP had been promoted significantly by adding the amendments to the soil. Phosphorus sorption maxima of the soil is 1.97 g/kg, and the optimum proportion of each amendment was 10% for WTR, 2% for oyster-shell powder, and 6% for crystal, that phosphorus sorption maxima is 3.78 g/kg, 2.71 g/kg and 2.75 g/kg, respectively. The mean removal (%) of total phosphorus was 58.3% for the WTR, 71.3% for the oyster-shell powder, and 75.6% for the crystal, respectively. The FCPs in the oyster-shell powder and crystal incubated soils were mainly controlled by Ca concentration. The major inorganic phosphorus fraction of the original soil was Fe-/Al-P (NaOH-Pi), however the proportion of the easily soluble phosphorus (NH4Cl-Pi) was as high as above 25%. After us9ing the amendments, the NaOH-Pi and Ca-P (HCl-Pi) in each incubated soil increased significantly, and the NH4Cl-Pi falled to below 12%. The inorganic phosphorus fractions of each incubated soil were mainly in NaOH-Pi, but with the less extent in HCl-Pi.
第1章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第2章 文獻回顧 3
2.1 環境中磷的來源與特性 3
2.1.1 磷的來源 3
2.1.2 磷的特性 4
2.1.3 過量磷之危害 5
2.2 濕地簡介 8
2.2.1 濕地定義 8
2.2.2 濕地分類 13
2.2.3 濕地功能 14
2.2.4 濕地土壤 19
2.2.5 濕地中磷之轉換 21
2.3 改良劑簡介 26
2.3.1 改良劑固定磷之原理 26
2.3.2 淨水污泥來源及特性 28
2.3.3 淨水軟化碳酸鈣結晶來源及特性 32
2.3.4 蚵殼粉來源及特性 33
第3章 材料與方法 36
3.1 供試樣品之採集 36
3.2 供試土壤前處理與基本性質分析 40
3.3 土壤改良劑對土壤pH值影響試驗 40
3.4 磷等溫吸附試驗 41
3.4.1 磷等溫吸附試驗最佳振盪時間 41
3.4.2 磷等溫吸附試驗 41
3.5 人工濕地之室溫模擬批次試驗 42
3.6 無機磷序列抽出試驗 44
3.7 統計分析 46
第4章 結果與討論 47
4.1 供試樣品之基本性質 47
4.2 改良劑礦物種類鑑定 49
4.3 添加土壤改良劑與pH值之關係 49
4.4 磷等溫吸附試驗 49
4.4.1 磷等溫吸附試驗最佳振盪時間 49
4.4.2 自來水淨水污泥磷等溫吸附試驗 54
4.4.3 淨水軟化碳酸鈣結晶磷等溫吸附試驗 54
4.4.4 蚵殼粉磷等溫吸附試驗 55
4.5 人工濕地之室溫模擬批次試驗 58
4.5.1 出流水總磷濃度變化 58
4.5.2 出流水各離子濃度變化 61
4.5.3 出流水pH值及電導度 66
4.6 濕地土壤無機磷序列抽出 66
4.7 濕地土壤X-ray礦物種類鑑定 67
第5章 結論 71
參考文獻 73
作者簡介 81
日本財團法人水道技術研究中心 (1998) 淨水污泥再利用之調查(平成7-9 年)。
台灣省自來水公司第七區管理處 (2004) 自來水製程概述。自來水製程概述報告資料。
行政院農委會 (2004) 農業事業廢棄物再利用種類及管理方式。農業法規行政規則。
行政院環境保護署 (2003) 台灣地區環境水質監測年報。台北。
何茂賢 (2003) 以人工濕地系統處理受污染河水中營養鹽之探討。嘉南藥理科技大學環境工程衛生系碩士論文,4-8頁。
李展榮、方力行 (1996) 濕地的界定及其功能。台灣濕地4。
李錦地 (2002) 台灣地區家庭污水量及污染量推估研究。內政部營建署委託研究報告。
林健三 (1996) 環境工程概論。鼎茂圖書出版公司,台北, 2.23 - 2.24頁。
胡弘道 (1988) 森林土壤學。茂昌圖書有限公司,台北, 254 - 260頁。
康世芳、劉明仁 (2001) 淨水污泥餅再利用技術調查及應用於臺北自來水事業處淨水場可行性之評估。臺北自來水事業處委託研究計畫報告,台北市。
許正一、陳尊賢 (1995) 濕地土壤的定義、化育作用與分類。科學農業,43: 293-299。
曾四恭 (1994) 放流水中特殊污染物質管制策略研究-養豬廢水氮、磷去除技術之建立及研究(第三年)。國立台灣大學環境工程研究所。

經濟部工業局 (2005) 經濟部事業廢棄物再利用種類及管理方式。工業行政相關法規。
詹武忠、楊肇政、鄭阿金 (1995) 污染防治。高立圖書有限公司,台北,107、203頁。
劉又瑞 (2002) 淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究。國立交通大學環境工程研究所碩士論文。
蔡震壽 (2001) 我國漁業廢棄物質量基線資料調查與處理措施規劃。九十年度農委會科技計畫期末摘要報告。
謝寅雲 (2001) 淨水污泥/工業廢水污泥之燒結資源化研究。國立台灣大學環境工程研究所碩士論文。
羅雅含 (2002) 工業廢水污泥/淨水污泥共同融熔處理之資源化研究。國立台灣大學環境工程研究所碩士論文。
American Society of Civil Engineers, American Water Works Association, and the USEPA (1996) Technology Transfer handbook: Management of water treatment plant residuals.
Ann, Y., K.R. Reddy, and J.J. Delfino (2000) Influence of chemical amendments on phosphorus immobilization in soils from a constructed wetland. Ecol. Engin. 14: 157-167.
Ann, Y., K.R. Reddy, and J.J. Delfino (2000) Influence of redox potential on phosphorus solubility in chemically amended wetland organic soils. Ecol. Engin. 14: 169-180.
Balmer, P., and B. Hultman (1988) Control of phosphorus discharges: present situation and trends. Hydrobiologia. 170: 305-319.
Barnhisel, R., and P.M. Bertsch (1982) Aluminum, 275-300. In A. L. Page et al. (ed).Methods of Soil Analysis, Part 2. 2nd ed. Agron. Monogr. 9. SAS and SSA, Madison, WI.
Boruvka, L., and J.E. Rechcigl (2003) Phosphorus retention by the Ap horizon of a spodosol as influenced by calcium amendments. Soil Sci. 168: 699-706.
Bugbee, G.J., and C.R. Frink (1985) Alum sludge as a soil amendment: Effects on soil properties and plant growth. Bull. 823. Connecticut Agric. Exp. Stn., New Haven.
Castro, B., and J. Torrent (1995) Phosphate availability in calcareous Vertisols and Inceptisols in relation to fertilizer type and soil properties. Fert. Res. 40: 109-119.
Cooke, G.D., E.B. Welch, S.A. Peterson, and P.R. Networth (1986) Lake and reservoir restoration. Butterworth Stoneham MA 02198: 388.
Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe (1979) Classification of wetlands and Deepwater Habitats of the United States. Washington, D. C.: U.S. Fish & Wildlife service Pub. FWS/OBS-79/31: 103.
El-Swaify, S.A., and W.W. Emerson (1975) Changes in the physical properties of soil clays due to precipitated aluminum and iron hydroxides: I. Swelling and aggregate stability after drying. Soil Sci. Soc. Am. Proc. 39: 1056-1063.
Falconer, I.R., M.T.C. Runnegar, T. Buckley, V.L. Huyn, and P. Bradshaw (1989) Using activated carbon to remove toxicity from drinking water containing cyanobacterial blooms. J. American water works association. 81(2): 102-105.
Gee, G.W., and J.W. Bauder (1986) Particle size analysis: 383-411. In A. Klute (ed).Methods of Soil Analysis, Part 1. 2nd ed. Agron. monogr. 9. ASA and SSSA,Madison, WI.
Gray, S., J. Kinross, P. Read, and N. Marland (2000) The nutrient assimilative capacity of mareal as a substrate in constructed wetland systems for waste reatment. Wat. Res. 34(8): 2183-2190.
Hammer, D.A. (1996) Creating freshwater wetlands, 2nd ed., Lewis.
Ippolito, J.A., K.A. Barbarick, D.M. Heil, J.P. Chandler, and E.F. Redente (2003) Phosphorus retention mechanisms of a water treatment residual. J. Environ. Oual. 32: 1857-1864.
Kadlec, R.H., and R.L. Knight (1996) Treatment wetlands, 2nd ed., Lewis.
Lindsay, W.L. (1979) Chemical Equilibria in Soils. John Wiley & Sons. New York.
McGrath, S.P., and S. Smith (1990) Chromium and nickel: 125-150. In B. J. Alloway (eds.). Heavy Metals in Soils. John Wiley & Sons, New York, USA.
McLean, E.O. (1982) Soil pH and lime requirement: 199-224.In A. L. Page et al. (ed).Methods of Soil Analysis, Part 2. 2nd ed. Agron. Monogr. 9. SAS and SSA, Madison, WI.
Mehta, N.C., J.O. Legg, and C.A.I. Goring (1954) Black Determination of organic phosphorus in soils: I.Extration methods. Soil Sci. Soc. Am. Proc. 18: 443-449.
MOE (1978) Basic sewage treatment operation, Ontario ministry of the environment. Toronto.
Moore, P.A. Jr., T.C. Daniel, and D.R. Edwards (2000) Decreasing phosphorus runoff and inhibiting ammonia loss from poultry manure with aluminum sulfate. J. Environ. Oual. 29: 37-49.
Morrill, L.G., B.C. Mahilum, and S.H. Mohiuddin (1982) Sorption, degradation and persistence in organic compounds in soil, Ann Arbor Sci. Publishers, Ann Arbor, Michigan.
Muljadi, D., A.M. Posner, and J.P. Quirk (1996) The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. Soil Sci. 17: 212-247.
Nelson, D.W., and L.E. Sommers (1982) Methods of Soil Analysis, Part 2. 2nd ed: Total carbon, organic carbon, and organic matter: 539-577. A. L. Page et al. (ed.). Agron. Monogr. 9. ASA and SSSA, Madison, WI.,
O’Reilly, S.E., and J.T. Sims (1995) Phosphorus adsorption and desorption in a sandy soil amended with high-rates of coal fly-ash. Commun. Soil Sci. Plant Anal. 26: 2983-2993.
Olsen, S.R., and F.E. Khasawenh (1980) Use and limitations of physical-chemical criteria for assessing the status of phosphorus in soils. in the role of phosphorus in Agriculture. F. E. Khasawneh et al. (eds.). Madison, Wis.: Amer. Soc. of Agron.
Pant, H.K., K.R. Reddy, and R.M. Spechler (2002) Phosphorus retention in soils from a prospective constructed wetland site: environmental implications. Soil Science. 167: 607-615.
Price, T., and D. Probert (1997) Role of constructed wetlands in environmentally-sustainable developments. Applied Energy. 57: 129-174.
Reed, S.C., R.W. Crites, and E.J. Middlebrooks (1995) Wetland Systems, Natural Systems for Waste Management and Treatment, 2nd editions: 173-284. McGraw-Hill, Inc., New York, N.Y.
Reisenauer, H.M. (1982) Methods of SoilAnalysis, Part 2. Chemical and microbiological properties: Chromium: 337-346. In A. L. Page (ed). Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Rengasamy, P., J.M. Oades, and T.W. Hancock (1980) Improvement of soil structure and plant growth by addition of alum sludge. Commun. Soil Sci. Plant Anal. 11: 533-545.
Rhoades, J.D. (1982) Methods of Soil Analysis, Part 2. 2nd ed.: Cation exchangeable capacity: 149-157. In A. L. Page et al. (eds.) Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Ryan, J., H.M. Hasan, M. Baasiri, and H.S. Tabbara (1985) Availability and transformation of applied phosphorus in calcareous Lebanese soils. Soil Sci. Soc. Am. 49: 1215-1220.
Ryden, J.K., and F.R. Harris (1973) Phosphorus in Runoff and Streams. Adv. Agron. 25: 1-45.
Sakadevan, K., and H.J. Bavor (1998) Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Wat. Res. 32(2): 393-399.
Sanville, W.D., A.R. Gahler, J.A. Searcy, and C.F. Powers (1976) Studies on lake restoration by phosphorus inactivation, EPA-600/3-76-041, ecological effects research division, Corvalliis, environmental research laboratory, Corvallis, OR 97330.
Sanyal, S.K., and S.K. De Datta (1991) Chemistry of phosphorus transformations in soil. Adv. Soil Sci. 16: 1-120.
SAS Institute (1988) SAS/STAT User’ Guide, SAS Inst. Cary, NC.
Scambilis, N.A. (1977) Land disposal of chemical sludges. Ph.D. diss. Univ. of Missouri, Columbia.
Shaw, S.P., and C.G. Fredine (1956) Wetland of the United State, Their extent, and their value for waterfowl and other wildlife. U.S. department of interior, fish and wildlife service, circular 39: 67. D. C. Washington.
Shreve, B.R., P.A. Moore, Jr., D.M. Miller, T.C. Daniel, and D.R. Edwards (1996) Long-term phosphorus solubility in soils receiving poultry litter treated with aluminum, calcium, and iron amendments. Commun. Soil Sci. Plant Anal. 27: 2493-2510.
Stevenson, F.W. (1986) Cycles of Soil, Wiley, New York.
Stout, W.L., A.N. Sharpley, and H.B. Pionke (1998) Reducing soil phosphorus solubility with coal combustion by-products. J. Environ. Qual. 27: 111-118.
Stumm, W., and J.J. Morgan (1970) Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley, New York.
Summers, R.N., N.R. Guise, and D.D. Smirk (1993) Bauxite residue (red mud) increases phosphorus retention in sandy soil catchments in Western Australia, Fertilizer research 34: 85-94.
U. S. Soil Conservation Service (1975) Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, U. S. soil conservation service agric. Handbook 436: 754 Washington, D. C.
U. S. Soil Conservation Service (1987) Hydric soils of the United States, in cooperation with the national technical committee for hydric soils. Washington, D. C.
USEPA, A HandBook of Constructed Wetlands, Vol 2. : Domestic Wastewater.
Van Riemsdijk, W.H., F.A. Weststrate, and G.H. Bolt (1975) Evidence for a new aluminum phosphate phase from reaction rate of phosphate with aluminum hydroxide. Nature (London) 257: 473-474.
Waring S.A., and J.M. Bremner (1964) Ammonium production in soil unser waterlogged conditions as an index of nitrogen availability. Nature (London). 201: 951-952.
Mitsch, W.J., and J.G. Gosselink (2000) Wetlands. John Wiley and Sons 3nd ed., NY, USA.
Williams, J.D.H., J.K. Syers, and T.W. Walker (1967) Fractionation of soil inorganic phosphate by a modification of Chang and Jackson’s procedure. Soil Sci. Soc. Amer. Proc., 31: 736-739.
Wilms, D., K. Vercaemst, and J.C. Van Dijk (1992) Recovery of silver by crystallization of silver carbonate in a fluidized-bed reactor. Water research. 26(2): 235-239.
Yoon, G.L., B.T. Kim, B.O. Kim, and S.H. Han (2003) Chemical-mechanical characteristics of crushed oyster-shell. Waste Management 23: 825-834.
Zoltai, S.C. (1988) Wetland environments and classification, in wetlands of Canada, ecological land classification series, No. 24: 1-26. National wetlands working group, ed., environment Canada, Ottawa, Ontario, and Polyscience publication, inc., Montreal, Quebec.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top