跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/25 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建宇
研究生(外文):Jian-yu Lin
論文名稱:以正交偏振光回饋壓制半導體雷射同調崩潰之研究
論文名稱(外文):Suppressing Coherence Collapse of Semiconductor Laser with Orthogonal Polarization Optical Feedback
指導教授:嚴祖強
指導教授(外文):Tsu-Chiang Yen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:100
中文關鍵詞:同調崩潰正交偏振光回饋
外文關鍵詞:Coherence CollapseOrthogonal Polarization Optical Feedback
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:1
半導體雷射在受到大量同調光回饋的影響時,將導致雷射產生同調崩潰的現象,而此現象將嚴重降低半導體雷射在應用上的效能。本研究的目的是企圖用正交偏振光回饋,壓制半導體雷射同調崩潰的產生進而消除雷射輸出的雜訊。

實驗中,我們先探討半導體雷射在同調崩潰時的特性。我們將Hitachi HLP 7806G的半導體雷射的工作電流設為63.9 mA,溫度為21.9 ℃,並將-11 dB的同調光回饋至雷射共振腔中,我們發現雷射從原本的單縱模狀態變成線寬非常寬的多模振盪,同時在電訊號頻譜分析儀上所測量出來的相對雜訊強度也上升了約15 dB,此時雷射所呈現出的現象,即是同調崩潰狀態。

實驗結果顯示,當-16 dB和-23 dB的正交偏振光同時回饋至雷射共振腔中時,確實能有效壓制雷射的同調崩潰狀態,使其變回十分穩定的單縱模輸出,此結果將有助於提升半導體雷射在應用上的價值。論文中也有討論許多相關實驗的結果,藉以加強說明正交偏振回饋光和半導體雷射的交互作用。
The coherence of a semiconductor laser subjected to a coherent optical feedback of greater than -30 dB will collapse, causing the laser’s performance in many applications to be severely degraded. This research investigated the feasibility of suppression the coherence collapse with orthogonal-polarization optical feedback.

In the experiments, we first studied the characteristics of coherence collapse state of semiconductor laser. Under an operational condition of 63.9 mA, 21.9℃ and -11 dB of coherent optical feedback, a Hitachi HLP 7806G semiconductor laser would be conducted from its solitary single-mode state into a multimode oscillation state with a very broad linewidth. At the same time, the relative intensity noise measured from the RF spectrum analyzer drastically raised about 15 dB.

When a -16 dB and a -23 dB orthogonal-polarization optical feedback were fed back into the laser’s cavity. The coherence collapse could be effectively suppressed, while the laser was conducted back to its solitary single-mode state stably. This result will greatly increase the application of the laser. Some experiments were also reported to explore the interaction between the laser and the orthogonal-polarization feedback light.
致謝辭
中英文摘要
目錄
圖表目錄

第一節 簡介

第二節 半導體雷射的同調崩潰

第三節 實驗系統介紹

第四節 實驗結果及討論

第五節 結論

參考資料

附錄
[1] Acket, G. A., Lenstra, D., den Boef, A. J. and Verbeek, B. H., “The
influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron., 20, 1163, 1984.

[2] Agrawal, G. P., “Line narrowing in a single-mode injection laser due to
external. optical feedback,” IEEE J. Quantum Electron., 20, 468, 1984.

[3] Biesterbos, J. W. M., den Boef, A. J., Linden, W. and Acket, G. A., “Low frequency mode-hopping optical noise in AlGaAs channeled substrate lasers produced by optical feedback,” IEEE J. Quantum Electron., 19, 986, 1983.

[4] Cheng, D. L., Yen, T. C., Chang, J. W. and Tsai, J. K. “Generation of
high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun., 222, 363, 2003.

[5] Goldberg, L., Taylor, H. F., Dandridge, A., Weller, J. F. and Miles, R. O., “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE Trans. Microwave Theory Technol., 30, 401, 1980.




[6] Grillot, F., Thedrez, B., Gauthier-Lafaye, O., Martineau, M. F., Voiriot,
V., Lafragette, J. L., Gentner, J. L. and Silvestre, L., “Coherence
Collapse Threshold of 1.3-μm Semiconductor DFB Lasers,” IEEE
Photon Technol Lett.

[7] Henry, C. H., “Theory of phase noise and power spectrum of a
single-mode injection laser,’’ IEEE J. Quantum Electron., 19, 1391,
1983.

[8] Helms, J. and Petermann, K., “A simple analytic expression for the
stable operation range of laser diodes with optical feedback,” IEEE J.
Quantum Electron., 26, 833, 1990.

[9] Ho, K. P., Walker, J. D. and Kahn, J. M., “External optical feedback
effects on intensity noise of vertical cavity-cavity surface-emitting
lasers,” IEEE Photon. Technol. Lett., 5, 892, 1993.

[10] Huyet, G., Balle, S., Giudici, M., Green, C., Giacomelli, G. and Tredicce, J. R., “Low-frequency fluctuations and multimode operation of a
semiconductor laser with optical feedback,” Opt. Commun., 149, 341,
1998.

[11] Hong, Y., Bandyopadhyay, S., Sivaprakasam, S., Spencer, P. S. and Shore, K. A., “Noise Characteristics of a Single-Mode Laser Diode Subject to Strong Optical Feedback,” J. Lightwave Technol., 20, 10, 2002.
[12] Kikuchi, K. and Okoshi, T., “Simple formula giving spectrum
narrowing ratio of semiconductor-laser output obtained by optical
feedback,” Electron. Lett., 18, 10, 1982.

[13] Kawaguchi, H., Igarashi, T. and Takahashi, “Suppression of multiple pulse formation in actively mode-locked laser diodes by gain quenching,” Opt. Lett., 20, 859, 1994.

[14] Lenstra, D., Verbeek, B. H. and den Boef, A. J., “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J.
Quantum Electron., 21, 674, 1985.

[15] Li, H., Ye, J. and McInerney, J. G., “Detailed Analysis of Coherence Collapse in Semiconductor Lasers,” IEEE J. Quantum Electron., 29, 9, 1993.

[16] Langley, L. N., Shore, K. A. and Mørk, J., “Dynamical and noise
properties of laser diodes subject to strong optical feedback,” Opt. Lett., 19, 2137, 1994.

[17] Miles, R. O., Dandridge, A., Tveten, A. B., Taylor, H. F. and
Giallorenzi, T. G., “Feedback-induced line broadening in cw
channel-substrate planar laser diodes,” Appl. Phys. Lett., 37, 990, 1980.

[18] Osmundsen, J. H., Tromborg, B. and Olesen, H., “Experimental
investigation of stability properties for a semiconductor laser with
optical feedback,” Electron. Lett., vol. 19, pp. 1068-1070, Dec.1983.

[19] Otsuka, K. and Chern, J. L., “High-speed pico-second pulse generation in semiconductor lasers with incoherent optical feedback,” Opt. Lett., 16, 1759, 1991.

[20] Patzak, E., Olesen, H., Sagimura, A., Saito, S. and Mukai, T., “Spectral linewidth reduction in semiconductor lasers by an external cavity with weak optical feedback,” Electron. Lett., 19, 938, 1983.

[21] Risch, C. and Voumard, C., “Self-pulsation in the output intensity and spectrum of GaAs-AlGaAs cw diode lasers coupled to a frequency-selective external optical cavity,” J. Appl. Phys., 48, 2083 1977.

[22] Salemink, H. W. M. and Biesterbos, J. W. M., “Optical stability of
narrow stripe proton-isolated AlGaAs DH lasers with gain-guiding,” Appl. Phys. Lett., 43, 434, 1983.

[23] Spano, P., Piazzolla, S. and Tamburrhi, M., ‘‘Theory of noise in
semiconductor lasers in the presence of optical feedback,” IEEE J. Quantum Electron., 20, 350, 1984.

[24] Tkach, R. W. and Chraplyvy, A. R., “Regimes of feedback effects in
1.5 pm distributed feedback lasers,” J. Lightwave Technol., 4, 1655, 1986.



[25] Yasaka, H. and Kawaguchi, H., “Linewidth reduction and optical
frequency stabilization of a distributed feedback laser by incoherent
optical negative feedback,” Appl. Phys. Lett., 53, 1360, 1988.

[26] Yasaka, H., Yoshikuni, Y. and Kawaguchi, H., “FM noise and spectral
linewidth reduction by incoherent optical negative feedback,” IEEE J.
Quantum Electron., 27, 193, 1991.

[27] Yen, T. C., Chang, J. W., Lin, J. M. and Chen, R. J., “High-Frequency
Optical Signal Generation in a Semiconductor Laser by Incoherent
Optical Feedback,” Opt. Commun., 150, 158, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top