跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪瑞鴻
研究生(外文):Rui-hung Hung
論文名稱:正交互補碼性能之研究
論文名稱(外文):On the Properties of Perfectly Orthogonal Complementary Codes
指導教授:陳曉華陳曉華引用關係
指導教授(外文):Hsiao-hwa Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:95
中文關鍵詞:正交互補碼
外文關鍵詞:Orthogonal Complementary Codes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是研究正交互補碼性能之研究,其正交互補碼為完全互補碼、超級互補碼和Generalized pairwise complementary code(GPC code),探討由產生方式去看正交互補碼的性能,了解從正交矩陣產生出來的正交互補碼之自相關函數與互相關函數是完美的。將正交互補碼用於直接序列展頻的分碼多工系統和位移堆疊傳輸的分碼多工系統,在這二種不同傳輸之中,正交互補碼在直接序列展頻的分碼多工系統下,具有完美的自互相關特性,所以可以有效的解決多路徑和多用戶間干擾。而在位移堆疊傳輸的分碼多工系統下,具有完美的互相關特性,但是適當的調整位移堆疊展頻的位移量,也可以有效的解決多路徑傳輸干擾。另外,GPC code是以提升系統用戶數以及保有次完美的自相關與互相關特性,也就是說以一段較長的IFW來取代完美的自相關與互相關特性,捨棄完美的特性來換取較多的用戶數的展頻碼。最後將討論的正交互補碼利用2D orthogonal variable spreading factor (OVSF) codes擴展方式來產生multi-rate之正交互補碼,讓正交互補碼也可以達到支持不同傳輸速率的用戶。
在本文的第二章,我們開始介紹完全互補碼之特性證明,再不同傳輸下的對抗干擾的能力。第三章介紹超及互補碼之特性證明,再不同傳輸下的對抗干擾的能力。第四章介紹GPC code之特性證明,說明此展頻碼是犧牲了完美的特性來換取較多的用戶數的展頻碼。第五章介紹multi-rate之正交互補碼的產生與完美特性。
This is a research on orthogonal complementary codes, including complete complementary codes, super complementary codes, and generalized pairwise complementary code(GPC code). I discuss the properties of orthogonal complementary codes by the generation of orthogonal matries and realize its auto-correlation and cross-correlation are perfect. Apply orthogonal complementary codes on direct-sequence spreading system and offset stacked spreading system. In these two kinds of transmission, orthogonal complementary codes have the ideal auto-correlation and cross-correlation by way of direct-sequence spreading system, so it can solve multipath interference and multi-access interference effectively. While in offset stacked spreading system, orthogonal complementary codes have ideal cross-correlation. Modulating the offset chip time of offset stacked spreading properly can also solve multipath interference effectively. Moreover, GPC code keeps sub-ideal auto-correlation and cross-correlation, and it forsakes its ideal property to exchange for spreading codes with more users.
In Chapter 2, we start to introduce complete complementary codes and its property to resist interferences in different transmission. Chapter 3 is the introduction of super complementary codes and its property to resist interferences in different transmission. Chapter 4 is the introduction of GPC code. We explain that GPC code forsakes its ideal property to exchange for spreading codes with more users. Chapter 5 is the introduce multi-rate orthogonal complementary codes and use 2D OVSF to suport different transmission speed.
中英文摘要 I
誌謝 III
目錄 IV
圖表目錄 VII
參數列表 VII

第一章 導論 1
1.1 研究動機 1
1.2 論文架構 2
1.3 基本理論介紹 3
1.3.1 互補碼(Complementary Code) 3
1.3.2 偶位移正交序列(Even Shift Orthogonal Sequence) 4
第二章 完全互補碼之One chip與 chip正交特性與頭尾偵測 7
2.1 完全互補碼產生方式 7
2.2 完全互補碼的完美正交特性證明 10
2.3 在不同的傳輸下超級互補碼的特性 17
2.3.1 直接序列展頻(Direct-sequence spreading)前後偵測之效益 17
2.3.2 位移堆疊展頻(Offset stacked spreading)前後偵測之效益 22
第三章 超級互補碼之互補正交特性與頭尾偵測 27
3.1 超級互補碼產生方式 27
3.2 超級互補碼的完美正交特性證明 29
3.2.1 由維度為2的正交矩陣產生超級互補碼 29
3.2.2 由維度為 的正交矩陣產生超級互補碼 37
3.3 在不同的傳輸下超級互補碼的特性 46
3.3.1 直接序列展頻(Direct-sequence spreading)前後偵測之效益 46
3.3.2 位移堆疊展頻(Offset stacked spreading)前後偵測之效益 48
3.4 附錄 53
第四章Generalized Pairwise Complementary Code (GPC code)的特性證明 57
4.1 GPC code的產生方法 57
4.1.1 產生偶位移正交序列 57
4.1.2 產生GPC code 66
4.2 GPC code特性證明 67
第五章Multi-Rate之正交互補碼 77
5.1 Multi-Rate之正交互補碼產生過程 77
5.2 Multi-Rate正交互補碼之自相關與互相關完美證明 81
第六章 結論 85
附錄A:零相關區(Zero Correlation Zone)與最大用戶數 87
參考文獻 93
作者簡歷 95
[1]M. Golay, “Complementary series,”, IEEE Trans. Inform. Theory, Vol 7, pp. 82-87, Apr 1961.

[2]R. Turyn, “Ambiguity functions of complementary sequences,” IEEE Trans. Inform. Theory, Vol 9, pp.46-47, Jan 1963.

[3]R. Sivaswamy, “Multiphase Complementary Codes,” IEEE Trans. Inform. Theory, Vol 24, pp.546-552, Sep 1978.

[4]R. Frank, “Polyphase complementary codes,” IEEE Trans. Inform. Theory, Vol 26, pp.641-647, Nov 1980.

[5]N. Suehiro,and M. Hatori, “N-shift cross-orthogonal sequences,” IEEE Trans. Inform. Theory, Vol 34, pp.143-146, Jan. 1988.

[6]P.Z. Fan, N. Suehiro, N. Kuroyanagi and X.M. Deng, “Class of binary sequenceswith zero correlation zone,” Electronics Letters, Vol 35, Issue 10,13 May 1999.

[7]Y. Taki, H. Miyakawa, M. Hatori and S. Namba, “Even-shift orthogonal sequences,” IEEE Trans. Info. Theory, vol. IT-15, pp. 295-300, Mar. 1969.

[8]Chen, H.-H.; Yeh, Y.-C. “Capacity of space-time block-coded CDMA systems: comparison of unitary and complementary codes,” Communications, IEE Proceedings- Volume 152, Issue 2, 8 April 2005.

[9]Liru Lu; Dubey, V.K. “Complete complementary code for spread time CDMA system,” Spread Spectrum Techniques and Applications, 2004 IEEE Eighth International Symposium on 30 Aug.-2 Sept. 2004.

[10]Turcsany, M.; Farkas, P. “Three-dimensional orthogonal complete complementary codes” Mobile Future, 2004 and the Symposium on Trends in Communications. SympoTIC ''04. Joint IST Workshop on 24-26 Oct. 2004.

[11]Khirallah, C.; Coulton, P.; Mohsin, S.; Zein, N. “High data rate enhancement for beyond 3G services using complete complementary codes,” Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on Volume 3, 5-8 Sept. 2004.

[12]Farkas, P.; Turcsany, M. “On spreading efficiency of complementary codes,” Mobile Future, 2004 and the Symposium on Trends in Communications. SympoTIC ''04. Joint IST Workshop on 24-26 Oct. 2004.

[13]Jin-Xian Lin, “Complementary Code Based CDMA Architecture,” 2002. in Institute of Communication Engineering of National Sun Yat-Sen University

[14]Chia-Ming Yang, Pei-Hsuan Lin, Guu-Chang Yang, and Wing C. Kwong, “2D Orthogonal Spreading Codes for Multicarrier DS-CDMA Systems,” Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan, R.O.C.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文