跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林金霖
研究生(外文):Lin-Chin Lin
論文名稱:平面上物體的厚薄對人員抓取能力與策略之影響
指導教授:王明揚王明揚引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:92
中文關鍵詞:抓取抓取能力抓取策略產品設計
外文關鍵詞:GripGrip abilityGrip strategyProduct design
相關次數:
  • 被引用被引用:2
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本論文是探討物體厚薄程度如何影響人的抓取時間以及採行的抓取策略,時間的物體為直徑44mm大小的圓形薄片體,其厚度分別為1, 2.6, 3.1, 3.9, 5.3, 8.2及20.0 mm的七種厚度水準。共有15位男性及15女性大學生參與這個研究,其實驗工作是將放置在平面上的薄片,以輕鬆方式進行抓取動作並量測抓取的時間,且每個物體隨機重複抓取六次。抓取時間訂為由手開始接觸到薄片體的瞬間始至薄片體完全離開平面的瞬間止。且抓取策略歸納為三種策略方式,分別為手部接觸策略、手部抓取主控策略及手部完成抓取策略三種。手部接觸策略有食指拖曳、拇指拖曳、食指固定、拇指固定及同時接觸等方法;手部抓取主控策略有食指主控、中指主控、無名指主控、食中指主控、中無名指主控、拇指主控及共同控制等方法;手部完成抓取策略有食指夾取、中指夾取、輔助夾取、三角夾取、中無名指、四指並用以及五指全用法等方法,並從中歸納出較佳之策略方式。
經由上述之步驟經過初步預試與正式實驗之後,得到以下重點結論給予產品設計領域中的設計者或相關人員應用與參考:1.研究結果顯示抓取時間與厚度的關係成反對數的關係,歸納公式:{ ;0 <厚度≦ 20},當厚度小於約3.1mm時,抓取時間會向上驟升表越形困難;而厚度大於約5.3mm之後,時間差異越小表達容易抓取的狀態。2.對於平面上薄片體,男性抓取能力績效與女性無顯著差異。3.在抓取策略上,面對不同厚薄程度的薄片體則以同時夾取接觸方式 (S) 與共同抓取掌控法 (Bf) 以及中無名指模式 (Mrg);或同時夾取接觸方式(S) 與共同抓取掌控法 (Bf) 以及輔助夾取模式 (Sg) 為較佳之抓取策略。4.人在主觀判斷上對在平薄物體的些微厚薄改變無法明顯的區分,只對較顯著的厚薄度變化有明顯的區分能力。5.就實驗結果而言,男性與女性在物體的厚薄主觀判斷上差異不大。

關鍵字:抓取、抓取能力、抓取策略、產品設計
The purpose of this thesis is to study the influence of the thickness of flat objects on people’s grip ability, by means of the measurement of the grip’s performance time. Observing how people grip the given flat objects, I want to come up with the better strategies in terms of the thickness of the gripped objects. In order to accomplish the above objective, I compose a series of questionnaires for the tested people, which compares differences before and after the test. On the basis of the result of my experiment, I attempt to provide some guidelines for people in terms of their subjective and objective difference.
The range of my research object is confined to the diametrically 44 mm-sized round objects. There are thirty normal participants, each of whom is given seven object’s levels tested for six times in a random order. This experiment totally amounts to 1260 data, which are recorded by Digital Video in terms of every motion of people’s grip, and succeeded with an analysis related to people’s grip ability.
I reach some conclusions that follow (and that may be taken as references for the designers of product design and people related): 1. The formula of People’s grip ability and flat object’s thickness is { ;0<thickness≦20}. People’s grip ability gets even weaker when the thickness of the object is below 3.1 mm; however, it gives more access for people’s ability to grip when the thickness of the flat object is above 5.3 mm. 2. Male’s grip ability is no difference with Female’s in terms of flat object on plane. 3. When given various flat objects, the following two strategies are recommended: a. Simultaneous (S), Both finger force (Bf) and Middle-ring finger grip (Mrg); b. Simultaneous (S), Both finger force (Bf) and Supported grip (Sg). 4. One can subjectively tell the difference of the thickness of the flat objects only when the difference is significant. 5. There is no significant deference between male and female in subjective judgment on the thickness of flat objects.

Keywords: Grip, Grip ability, Grip strategy, Product design
摘要 i
Abstract ii
致謝辭 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章、導論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究架構 3
第二章、文獻回顧 6
第一節 抓取能力 6
第二節 抓取因應策略 12
第三節 方法時間衡量法 18
第四節 小結 21
第三章、研究方法 22
第一節 研究範圍與限制 22
第二節 受試者之招募 24
第三節 實驗設備架構 25
第四節 實驗流程之建立 26
第五節 實驗問卷內容設計 30
第六節 實驗資料之蒐集 32
第七節 小結 39
第四章、實驗結果分析與討論 40
第一節 基本資料分析 40
第二節 能力績效分析 45
第三節 抓取策略分析 51
第四節 問卷分析 66
第五節 實驗結果討論 68
第五章、結論與建議 72
第一節 研究結論 72
第二節 未來研究方向與建議 73
參考文獻 74
附錄一、Mouse optical sensor 量測程式(程式碼) 76
附錄二、受試者基本資料暨問卷調查表(受試前) 78
附錄三、受試者問卷調查表(受試後) 80
附錄四、本研究引用肢節或部位之定義表 81
附錄五、實驗亂數順序表 82
附錄六、統計分析資料 85
方怡雯,”透明塑膠材料之產品應用研究-以i-mac電腦為例”,國立台北科技大學碩士論文,民91。
王鍾和,兒童發展,台北:大洋出版社,民69。
王茂駿、王明揚、林昱呈,台灣地區人體計測資料庫手冊,新竹市:中華民國人因工程學會,民91。
邱標麟,塑膠成型品的設計,台北:文復書局,民84。
陳文哲、葉宏謨,工作研究,台北:鼎茂圖書出版社,民92。
Aldien, Y. & Welcome, D. 2005. Contact pressure distribution at hand-handle interface: role of hand forces and handle size. I. J. Industrial Ergonomics, 35, 267-286.
Cutkosy, M. K. 1989. On Grasp Choice, Grasp Models, and the Design of hands for Manufacturing Tasks. IEEE Transactions on Robotics and Automation, 5(3), 269-279.
Flatt, A.E. 2000. Grasp. Baylor University Medical Center Proceedings, 13, 34-343.
Fagergren, A., Ekeberg, Ö., & Forssberg H. 2000. Precision Grip Force Dynamics: A System Identification Approach. IEEE Transactions on Biomedical Engineering, 47(10), 269-279.
Friel, K. M. & Nudo, R. J. 1998. Recovery of motor function after facal cortical injury in primates: compensatory movement patterns used during rehabilitative training. Somatosens Mot Res, 15, 89-173.
Fellows, G. L. & Freivalds, A. 1991. Ergonomics evaluation of a foam rubber grip for tool handles. Applied Ergonomics, 22(4), 225-230.
Fransson, C. & Winkel, J. 1991. Hand strength: the influence of grip span and grip type. Ergonomics, 34(7), 881-892.
Gentilucci, M., Caselli, L., & Secchi, C. 2003. Finger control in the tripod grasp. Experimental Brain Research, 149, 351-360.
Greig, M. & Wells, R. 2004. Measurement of prehensile grasp capabilities by a force and moment wrench: Motholdological development and assessment of manual workers. Ergonomics, 47(1), 41-58.
Imrhan, S. N. 1989. Trends in Finger Pinch Strength in Children, Adults, and the Elderly. Human Factors, 31(6), 689-701.
Imrhan, S. N. & Rahman, R. 1995. The effects of pinch width on pinch strengths of adult males using realistic pinch-handle coupling. I. J. Industrial Ergonomics, 16, 123-134.
Imrhan, S. N. 1992. An investigation of finger pull strengths. Ergonomics, 35(3), 289-299.
Jackson, S. R. & Newport, R. 2002. Monocular vision leads to a dissocation between grip force and grip aperture scaling during reach-to-grasp movements. Curr Biol, 12, 40-237.
Jeroen, B. J. S. & Brenner, E. 2001. Independent movements of the digits in grasping. Experimental Brain Research, 139, 92-100.
Kroemer, K. H. E. 1986. Coupling the hand with the handle: An Improved Notation of Touch, Grip, and Grasp. Human Factors, 28(3), 337-339.
Karger, D.W. & Bayha, F. H. 1977. Engineered Work Measurement - MTM – 1. New work Industrial press 3rd.
Napier, J. R. 1956. The prehensile movements of the human hand. J Bone Joint Surg, 53, 5-191.
Napier, J. R. 1961. Prehensibility and opposability in the hands of primates. Symp Zool Soc Lond, 5, 32-115.
Napier, J. R. 1980. Hands, 1st ed. (American). New York, Pantheon Book, 176.
Napier, J. R. 1993. Hands, Revised by Tuttle RH. Princetion: Princeton University Press, 9.
Nordin, M. & Frankel, V. H. 1989. Basic Biomechanics of The Musculoskeleta System, 2th ed. Philadelphia: Lea & Febiger.
Taylor, C. L. & Schwarz, R. J. 1955. The anatomy and mechanics of the human hand. Artificial Limbs, 2, 22-35.
Vallbo, A. & Johansson, R. 1978. The tactile sensory innervation of the glabrous skill of the human hand. In G. Gordon (ed.), Active touch. Elmsford, NY: pergamon.
Wong, Y. J. & Whishaw, I.Q. 2004. Precision grasps of children and young and old adults: individual differences in digit contact stregy, purchase pattern, and digit posture. Behavioural Brain Research, 154, 113-123.
Hedge, A. http://ergo.human.cornell.edu/DEA325notes/mmh.html. department of design and environmental analysis at Cornell University.
Thompson, D. M. http://moon.ouhsc.edu/dthompso/namics/hand.htm. department of biostatistics and epidemiology, University of Oklahoma Health Science Center.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top