(3.238.206.122) 您好!臺灣時間:2021/04/21 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳佳憲
研究生(外文):Chia-shien Wu
論文名稱:電腦輔助訓練系統開發與應用-以緊急應變中心為例
論文名稱(外文):The Development of the Computer Aided Tutorial System for Emergency Response Center
指導教授:黃雪玲黃雪玲引用關係
指導教授(外文):Sheue-Ling Hwang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:66
中文關鍵詞:電腦輔助訓練系統專家系統緊急應變中心
外文關鍵詞:Computer-aided trainingExpert systemERC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
在現今的半導體產業中,風險控制中心 (Emergency Response Center) 已經扮演著舉足輕重的角色,而傳統對於新進人員的訓練方式是使用紙本的教材以及資深的人員當講師傳授經驗。但相對於此種方法對於人力的需求也相對增加,且教材的編排要相當的凌亂而沒有規劃,因此也造成新進人員學習上的困擾,也許因此造成對於事故研判處理的過程中發生錯誤進而造成企業的損失。本研究希望透過電腦輔助教學系統 (Computer-aided training system) 的建構,來降低新進人員學習的負荷,且增加學習的效率與品質。而此訓練系統同時具備專家系統的特色,因此除了訓練的用途外,還可有決策支援的能力,使線上人員一旦事故發生時可以有決策的依據。
本研究的目的主要針對火災災害的控制與處理對於新進人員進行訓練,所有與火災控制的相關知識匯整於電腦訓練系統中,人員只需要使用電腦就可以進行訓練,不需受限於時間或訓練人員是否有時間。也因此對於新進人員的訓練也可以更加的有彈性,對於部門管理階層也可以更有效率的進行訓練工作。
系統建構的程序,首先對ERC的員工進行訪談以及蒐集相關教育訓練的教材,得到火災處理程序的相關知識,針對所取得的資訊進行電腦程式的設計。對於所建構系統的績效評量,設計了相關的實驗,受測者為清華大學工業工程碩士,且並無接受過相關的訓練。受測者隨機分為兩組,一組接受傳統的訓練方式,另一組使用電腦輔助教學系統的訓練。績效衡量的指標為受測者完成訓練程序之後,接受測試任務之正確性分數。
實驗結果顯示在記憶性知識的衡量上,傳統與電腦化輔助教學系統並沒有顯著的差異,但是在較複雜的火災處理流程性的知識學習上,電腦輔助教學系統顯著有較佳的績效表現。且遊戲化的介面設計也使使用者滿意度提高並增加學習的有趣性。經由對於結果的討論,也提出本研究的貢獻、限制以及未來的發展性,有待未來增加應用的範圍與層面。
In the traditional way, the training courses of Emergency Response Center (ERC) are depending on instructors and paper materials to educate under-trained workers. The lack of instructors and complex of training materials may cause wrong decisions in some situations and may result in a large damage to the semiconductor companies. Via computer-aided training system, the workers’ learning effectiveness and efficiency can be improved. The advantage of this system can let trainees learn all knowledge and skills about their jobs through the training program and well-designed interface, and that could decrease the loading of trainees. The system is based on an expert system. In the other hand, it is not only for training but has a potential ability for decision support.
The objective of this research was to construct a system to support fire situation handling training. Trainees can learn the procedure and skills to solve fire situation by the computer program. All material about the fire situation handling was included in the system. Therefore, trainees can learn by themselves without human instructors, and the training will be more flexible for trainees and manager of ERC.
The development of the system was following the research procedure. First, interview the staffs of ERC and collect training materials of fire situation handling. Second, program the training course and expert system in the computer. For evaluation of the training system, an experiment was conducted. The subjects are divided into two groups. One group received traditional training and another group used computer-aided system for training. All subjects were asked to finish several tasks for evaluating performance. After the experiment, subjects were asked about their opinions of the experiment.
From the results of the experiment, one could see that performances of declarative knowledge memory of the two groups were not different, but computer aided tutoring system had better performance in procedural knowledge memory. In the conclusion, contributions and limitations of the research and future work were described. In the future, the system can be applied to all emergency issues for ERC to make it more appropriate and powerful.
Table of Contents

Table of Contents I
List of Figures VI
List of Tables VII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Research framework 3
Chapter 2 Literature Review 6
2.1 An Intelligent Computer Aided Learning System 6
2.1.1 The structure of intelligent computer aided learning system 6
2.1.2 Modules of the system 7
2.2 Expert System 9
2.2.1 Expert System construction 10
2.2.2 Program evaluation 12
2.3 Knowledge Acquisition 13
2.3.1 Method of knowledge acquisition 13
2.3.2 Procedure and actions for emergency situation 15
2.3.3 Resources of knowledge acquisition 17
2.4 Interface Design 18
2.4.1 The fundamental concept of interface design 18
2.4.2 Procedure of interface design 22
2.4.3 Attractive interface design 23
Chapter 3 Methodology 24
3.1 Problem definition 24
3.2 Construction of the computer aided tutorial system 26
3.2.1 Software design of the computer aided tutorial system 27
3.2.2 System illustration 27
3.3 Experimental evaluation 33
3.3.1 Experimental variables 33
3.3.2 Subjects 34
3.3.3 Experimental environment 35
3.3.4 Experimental procedures 36
Chapter 4 Experimental Result 37
4.1 Tests scores 37
4.2 Normal probability test 38
4.3 t-test analysis 40
4.4 The analysis of the subjective questionnaire 41
4.5 Discussion 42
4.6 Limitations of experiments 44
During the experimental process, there exist some limitations as follows: 44
Chapter 5 Conclusions 45
5.1 The contributions of the research 45
5.2 Future works 46
There are still many works to do to make the system more appropriate: 46
References 47
Appendix A 51
Appendix B 56
Appendix C 61
Appendix D 63












List of Figures

Figure 1 Research framework 5
Fig. 2 A conventional learning system. (Kesheng Wang & Juhia Liu, 1996) 7
Fig. 3 A Computer Aided Learning system. (Kesheng Wang & Juhia Liu, 1996) 7
Fig. 4 Architecture of a general ICAL system. (Burn, 1991) 9
Fig. 5 Structuring the knowledge modeling process. (Bench-Capon, Paton & Shave, 1994) 15
Fig. 6 Incident identification knowledge unit (Hernandez & Serrano, 2001). 17
Fig. 7 User interface model (Berrais, 1997) 19
Fig. 8 Relation between the user and the computer system via the us interface (Berrais, 1997) 21
Fig. 9 User requirement specification for KEBSs design cycle (Howey, et al., 1989) 21
Fig. 10. The instructional interface design process overview. (Lohr, 2000) 23
Fig.12 Home page of the system 27
Fig. 13 The window of module 1 28
Fig. 14 The window of module 2 29
Fig. 16 The procedure of fore suite wearing 31
Fig. 17 The procedure of SCBA wearing 31
Fig. 18 The procedure of fire extinguisher operating 31
Fig. 19 The expert system of fire handling 32
Fig. 20 The window of module 4 33
Fig. 21 Manual learning 35
Fig. 22 Computer aided learning 36
Fig.23 Normality test on memory scores of declarative knowledge in manual 38
Fig.24 Normality test on memory scores of declarative knowledge in CAT 39
Fig. 25 Normality test on memory scores of procedural knowledge in manual 39
Fig. 26 Normality test on memory scores of procedural knowledge in CAT 40




List of Tables

Table 1: Scores of the two tests 37
Table 2: The t-test for scores of declarative knowledge memory (α= 0.05) 40
Table 3: The t-test for scores of Procedural knowledge memory (α= 0.05) 41
Table 4: Wilcoxon Signed Rank Test for the subjective questionnaire (α= 0.05) 42
[1] Alexander, T. (1984). “Why computers can’t outthink the experts”, Fortune, 110, pp. 105-118
[2] Bielawski, L., & Leward, R. (1991). “Intelligent systems with Applications.”, New York: John Wiley and Sons
[3] Baker, P. (1988) “Expert systems in engineering education.”, English Application of AI pp. 47-58
[4] Bielawski, L., & Lewand, R. (1991). “Intelligent Systems Design—Integrating Expert Systems. Multimedia and Data Base Technologies.”, New York: Wiley
[5] Burns, H., & Parlett, J. W. (1991). The evolution of intelligent tutorial systems. In Burns, H. (Ed.), “Dimensions of Design, Intelligent Tutorial Systems: Evolution in Design.”, pp. 1-12
[6] Buchanan, B. G.. (1986). “Expert systems: working systems and the research literature”, Expert Systems, 3, pp. 32-51
[7] Bench-Capon, T. J. M., Paton, R. C. & Shave, M. J. R., Nwana, H. S. (1994). “Domain-driven knowledge modeling for knowledge acquisition”, Knowledge Acquisition, 6, pp. 243-270
[8] Berrais, A. (1997). “Knowledge-based expert systems: user interface implications”, Advances in Engineering Software, 28, pp. 31-41
[9] Baba, N., Uchida, H. & Sawaragi, Y. (1984). “A gaming approach to the acid rain problem”, Simulation & Games, 15, 305-314
[10] Compeau, D., Olfman, L., Sein, M & Webster, J. (1995). “End-user training and learning:Introduction.”, Commun. ACM, 38(7) pp. 24-26
[11] Clarke, D., Turban, F., & Wang, P. (1994). “Integrating expert systems and multimedia for improved troubleshooting of the city of Los Angeles computer hardware.”, Expert System with Application pp. 441-449
[12] Coats, P. (1988). “Why Expert Systems Fail”, Financial Management, Autumn, pp. 77-86
[13] Cole, I., Lansdale, M. & Christie, B. (1985). Dialogue design guidelines. In Human Factors of Information Technology in the office, ed. B. Christie. Wiley, New York, pp. 212-241
[14] Durkin, J. (1996). “Expert systems: A view of the field.”, IEEE Expert pp. 56-63
[15] Davidson, V. J. (1994). “Expert systems in process control”, Food Research International, 27, pp. 121-8
[16] Gaines, B. R. (1987). “An overview of knowledge acquisition and transfer”, International Journal of Man- Machine Studies, 26, pp. 453-472
[17] Gaines, B. R. & Shaw, M. L. G. (1980). “New direction in the analysis and interactive elicit ion of personal construct system”, International Journal of Man- Machine Studies, 13, pp. 81-116
[18] Guimaraes, T., Yoon, Y., Clevenson, A. (1996). “Factors important to expert systems success A field test”, Information & Management, pp. 119-130
[19] Galitz, W. O. (1997). “The essential guide to user interface design: an introduction to gui design principles and techniques”, New York, NY: Wiley Computer Publishing
[20] Hayes-Roth, F., Waterman, D. A. & Lenat, D.B. (1983). Building Expert Systems, Reading, MA: Addison-Wesley
[21] Howey, K. R., Wilson, M. R. & Hannigan, S. (1989). “Developing a user requirements specification for IKBS design”, In Proc. Fifth Conf. British Computer Society Human-Computer Interaction Specialist Group, University of Nottinham, Sept., pp. 277-289
[22] Hernandez. J. Z., Serrano. J. M. (2001). “Knowledge-based models for emergency management systems”, Expert Systems with Applications, 20, pp. 173-186
[23] Johnson, C. K., & Jordan, S. R. (1983). “Emergency management of island oil and hazardous chemical spills: A case study in knowledge engineering.”, Building expert systems pp. 349-375
[24] Keyes, J. (1989). “Why expert systems fail”, AI Expert, 4, pp. 50-53
[25] Keyes, J. (1989). “Expert Systems and Corporate Database”, AI Expert, May, pp. 50-53
[26] Kayis, B., Charoenchai, N. (2004). “Development of a Knowledge-Based System for Nonpowered Hand Tools (TOOL EXPERT): Part I—The Scientific Basis”, Human Factors and Ergonomics in Manufacturing, Vol. 14 (3) pp. 257-268
[27] Lohr. L. L. (2000). “Designing the instructional interface”, Computer in Human Behavior, 16, pp. 161-182
[28] Loptez, M. A., Flores, C. H., Garcia, E. G. (2003). “An intelligent tutorial system for turbine startup training of electrical power plant operators”, Expert Systems with Applications, 24, pp. 95-101
[29] Litman, D. C. (1988). “Modeling human expertise in knowledge engineering: Some preliminary observations. Knowledge acquisition for knowledge-based systems. Knowledge-based systems”, New York: Academic Press, pp. 93-104
[30] Lapointe, J., Marcos, B., Veillette, M. & Laflamme, G.. (1989). “Bioexpert—an expert system for wastewater treatment process diagnosis”, Computers Chem. Engng, 13, pp. 619-30
[31] Liebowitz, J. (1995). “EXPERT SYSTEMS: A SHORT INTRODUCTION”, Engineering Fracture Mechanics Vol. 50, No. 5/6, pp. 601-607
[32] Lihou, D. A. (1981). “Aiding process plant operators in fault finding and corrective action.”, In Rouse, W. B., editors, Human Detection and Diagnosis of system Failures, volume 15 of NATO Conference Series III Human Factors pp. 501-522
[33] Moray, N. (1988). “Can decision aids help to reduce risk and human error?”, A program for research on the management of risk, Report EPRL-88-20
[34] Maugeri, F. & Asenjo, J. A. (1992). “An expert system for selection and synthesis of protein purification process”, Frontiers in Bioprocessing II, eds P. Todd, S. K. Sikdar, M. Bier. American Chemical Society, pp. 367-73
[35] Nimmo, I. (1995). “Adequately address abnormal operations.”, Chemical Engineering Progress 91(9) pp. 36-45
[36] Ntuen, C. A., & Chestnut, J. A. (1995). “An Expert System for Selecting Manufacturing Workers for Training”, Expert Systems With Applications, Vol. , No. 3, pp. 309-332
[37] Numao, M. (1995). “An Integrated Scheduling/Planning Environment for Petrochemical Production Process”, Expert Systems With Applications, Vol. 8, No.2, pp. 263-273
[38] Penalva, J. M., Coudouneau, L., Leyval, L., and Montmain, J. (1993). “A supervision support system for industrial process.”, IEEE Expert 8(5) pp. 57-65
[39] Rasmussen, J. (1986). “Information processing and human-machine interactions: An approach to cognitive engineering”, New York: North Holland
[40] Rossenbloom, P.S., Laird, J. E. & Newell, A. (1993). The Soar Papers: Research on Integrated intelligence. Vol. 1 and 2. Cambridge, MA: MIT press
[41] Shin D., & Venkatasubramanian, V. (1996). “Intelligent Tutorial System for Operator Diagnostic Problem Solving.”, Computers chem. Engng Vol. 20, Suppl pp. S1365-S1370
[42] Schank, R. C. (1991). “Where’s the AI?”, AI Magazine, Winter, 38-49
[43] Su. Y. L., & Lin D. Y. (1998). “The Impact of Expert-System-Based Training on Calibration of Decision Confidence in Emergency Management”, Computer in Human Behavior, Vol. 14, No. 1, pp. 181-194
[44] Sloane, S.B. (1991). “The Use of Artificial Intelligence by the United State Navy: Case Study of A Failure”, AI Magazine, Vol. 12, No. 1, pp. 80-92
[45] Simon, R. (1987). “The morning after”, Forbes, 140, pp. 164-168
[46] Schreiber, A. T., Wielinga, B. J. & Breuker, J. A. (Eds.) (1993). KADS: A Principle Approach to Knowledge-Based Systems Development, London: Academic Press
[47] Scandura, J. M. (1964). “Analysis of exposition and discovery modes of problem solving instruction”, Journal of Experimental Education, 33, pp. 149-159
[48] Scandura, J. M. (1971). “Deterministic theorizing in structural learning: three levels of empiricism”, Journal of Structural Learning, 3, pp. 21-53
[49] Scandura, J. M. (1977). Problem Solving: A Structural/Process Approach with Instructional Implications. New York: Academic Press.
[50] Scandura, J. M. (1984). “Structural (cognitive task) analysis: a method for analyzing content. Part II: toward precision, objectivity, and systematization”, Journal of Structural Learning, 8, 1-28
[51] Spark, J. K. (1985). “Issues in user modeling for expert systems”, In Proc. AISB85, University of Warwick, April
[52] Scott, A. C., Clayton, J. E. & Gibson, E. L. (1991). A Practical Guide to Knowledge Acquisition. Reading , MA: Addison-Wesley
[53] Show, H. L. & Woodward, J. B. (1990). “Modeling expert knowledge”, Knowledge Acquisition, 2, pp. 179-206
[54] Wang, K., & Liu, J. (1996). “AcuXpert: An Intelligent Computer Aided Learning and Diagnosing System for Acupuncture.”, Expert Systems with Application, Vol. 10, NO. 1 pp. 1-15
[55] Yokota, T., Ujita, H., Kato, K., Tanikawa, N. & Sida, T. (1992). “Development of intelligent CAI system for emergency procedure guideline.”, SIG-IES-9202-1 pp. 1-10
[56] Yokota, T., Ujita, H., Kato, K., Tanikawa, N. (1993). “Evaluation of functions in intelligent CAI system for emergency procedure guideline.”, SIG-IES-9303-6 pp. 31-36
[57] Yamamoto, Y. (1988). “CAI based on stand-alone method”, Journal of Electronic, Information and communication, 71, pp. 379-284
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔