(3.230.76.48) 您好!臺灣時間:2021/04/11 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:傅在峰
研究生(外文):Tsai-Feng Fu
論文名稱:NMDA接受器在果蠅嗅覺學習與記憶行為之研究
論文名稱(外文):NMDA-dependent olfactory learning and memory in Drosophila
指導教授:江安世
指導教授(外文):Ann-Shyn Chiang
學位類別:博士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:138
中文關鍵詞:NMDA接受器果蠅嗅覺學習與記憶蕈狀體長期記憶記憶可塑性
外文關鍵詞:NMDA receptorDrosophilaolfactory learning and memoryMushroom bodylong-term memorymemory plasticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
在脊椎動物中,NMDA接受器在參與突觸的可塑性以及記憶的形成過程中扮演著重要的調控角色。然而,有關非脊椎動物NMDA接受器的研究,至今闕如。在果蠅基因體中已知包含兩種參與組成NMDA接受器次單位的基因�泥NR1和dNR2. 將兩者共同表現在非洲爪蟾的卵中(Xenopus oocyte) 可以藉由glutamate 或NMDA引發流入的電流,產生電位的改變。本文中也發現NMDA接受器在成蟲果蠅中參與著學習與長期記憶的形成。利用免疫螢光標示的方法,觀察果蠅NMDA接受器中的兩種次單位在果蠅腦中的分佈狀況,證實在成蟲的果蠅中, dNR1與dNR2微弱的表現在整個腦中,但明顯的表現在腦中的數個細胞,並且其中一些細胞圍繞著蕈狀體(Mushroom body)的突觸區(dendritic region)。利用弱顯型的(hypomorphic) dNR1突變株,在同型合子的(homozygous) dNR1突變株中輕微的抑制dNR1表現。在行為研究上,則觀察到其嗅覺學習的缺陷。這些現象皆可以藉由再表現正常的dNR1得以回復。我也發現,藉由熱休克操縱子的控制,可在成蟲階段,大量誘導表現dNR1-antisense,則見到dNR1的表現被顯著抑制,同時造成嗅覺學習缺陷,這些果蠅顯示抑制dNR1也會影響LTM。另外,本文也建構UAS-dNR2與UAS-RNAidNR2基因轉殖果蠅。並同時利用泛神經表現的elav-Gal4果蠅株,控制UAS-RNAidNR2的表現。這些操作則顯示抑制dNR2的表現也同樣會影響果蠅的嗅覺學習。利用UAS-dNR2-2在上述的控制下,大量表現dNR2-2,會提升學習後24小時的長期記憶表現。我又利用適當的Gal4果蠅株,驅動dNR2-2以表現在腦中特殊的部位,如此已初步證實,ellipsoid body的大量表現的dNR2-2,增強了果蠅學習後的LTM。這些結果證實NMDA接受器參與果蠅記憶的形成,在非脊椎動物仍具有在脊椎動物中的相同執行記憶可塑性(memory plasticity)功能的角色。
It is well known that NMDA receptors (N-methyl-D-asparate; NMDARs or NRs) are essential in the regulation of synaptic and behavioral plasticity in vertebrates. In the Drosophila genome, two NMDAR homologs, dNR1 and dNR2 have been reported. Dosage- and voltage-dependent Glutamate and NMDA induced inward currents have been shown when they are co-expressed in Xenopus oocytes. In this study, I demonstrate the existence of functional NMDARs and their acute requirement for learning and long-term memory in the brain of adult Drosophila. Immunohistochemical labels indicate that two subtypes of NMDAR protein are weakly expressed in the entire brain, but with a preference in some neurons surrounding the dendritic region of the mushroom bodies. I show that hypomorphic mutations of the essential dNR1 gene disrupt olfactory learning, and can be rescued by wild-type transgenes. I also find that acute induction of an antisense mRNA for dNR1 disrupts olfactory learning and long-term memory (LTM), indicating a functional role for dNR1 in the formation of associative memory in Drosophila. Consistently, the knocking down of dNR2 protein by expressing UAS-RNAidNR2 under a pan-neuronal driver (elav-Gal4) also disrupts olfactory learning. In contrast, increasing dNR2 protein enhances LTM. Surprisingly, the dNR2-2 may act in the ellipsoid body, instead of the mushroom body, neurons for the LTM enhancement. These data explicitly demonstrate the involvement of NMDAR in Drosophila memory; further establish a role of NMDAR in the memory plasticity which has been preserved in evolution.
Abstract --------------------------------------------- 4
中文摘要 --------------------------------------------- 5
1.Introduction --------------------------------------- 6
1.1.Specific Aim ------------------------------------- 6
1.2.Rationale ---------------------------------------- 6
1.3.Background and Significance ---------------------- 8
1.3.1 NMDA receptor family of the glutamate receptors 8
1.3.2 Regulation of behavioural and synaptic plasticity by
NMDA receptor in vertebrates ------------------------- 9
1.3.3 NMDA receptors in invertebrate ----------------- 10 1.3.4 NMDA receptors in Drosophila ------------------- 11
2. Materials and Methods ----------------------------- 14
2.1. Fly Stocks -------------------------------------- 14
2.2 Cloning of dNR1 and dNR2 cDNAs-------------------- 14
2.3 Fly construction --------------------------------- 16
2.4 Reverse Transcription-PCR and Northern blot analysis -17
2.5 Antibody generation, Chemical cross-linking, Immunoprecipitation and Western blotting ------------- 18
2.6 Yeast two hybrid --------------------------------- 22
2.7 Immunobiochemistry ------------------------------- 23 2.8 Examination of GAL4 line expression patterns ----- 23
2.9 Heat-shock regimen ------------------------------- 24
2.10 Behaviour test ---------------------------------- 25
3.Results -------------------------------------------- 26
3.1 The dNR1 gene in Drosophila ---------------------- 26
3.2 The dNR2 gene in Drosophila ---------------------- 27
3.3 Expression of dNR1 and dNR2 in adult Drosophila brain 30
3.4 The dNR1 and dNR2 expressed in difference developmental stages------------------------------------------------ 33
3.5 dNR1 is closely associated with dNR2 in adult brain 34
3.6 Phylogenetic analysis of dNRs -------------------- 35
3.7 Defective learning and its rescue associated with homozygous mutations of dNR1 ------------------------- 36
3.8 Acute disruption of dNR1 abolishes long-term memory 37
3.9 Defective learning and memory enhancement by dNR2 -38
3.10 GenBank accession number ------------------------ 40
4.Discussions ---------------------------------------- 41
4.1 Regulation of Drosophila NR ---------------------- 41
4.2 Function of Drosophila NRs in Xenopus oocytes and Drosophila S2 cells ---------------------------------- 42
4.3 NMDA-dependent learning and LTM formation in Drosophila- ---------------------------------------------------- 45
4.4 Expression of dNR1 and dNR2 in adult Drosophila brain -- ---------------------------------------------------- 50
4.5 NR and behavioural biology ----------------------- 53
4.6 Neural circuitry of olfactory learning and memory in Drosophila-------------------------------------------- 55
5.Perspective ---------------------------------------- 57
6.References ----------------------------------------- 58
7.Figures -------------------------------------------- 75
8.Tables --------------------------------------------- 122
9.Appendix ------------------------------------------- 127
9.1 Appendix Figures --------------------------------- 127
9.2 Publications-------------------------------------- 137
10. Acknowledgment ----------------------------------- 138
Abdel-Majid, R.M., Leong, W.L., Schalkwyk, L.C., Smallman, D.S., Wong, S.T., Storm, D.R., Fine, A., Dobson, M.J., Guernsey, D.L., and Neumann, P.E. (1998). Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat Genet 19, 289-291.
Acharya, J.K., Jalink, K., Hardy, R.W., Hartenstein, V., and Zuker, C.S. (1997). InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 18, 881-887.
Alberini C.M., Ghirardi M., Metz R., Kandel E.R. (1994). C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell. 76,1099-114.
Alshuaib W.B., Hasan M., Cherian S.P., Fahim M.A.. (2004). Increased calcium influx through acetylcholine receptors in dunce neurons. Int J Neurosci. 114,115-28.
Andersson,O., Stenqvist,A., Attersand,A. and von Euler,G. (2001). Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics 78, 178-184
Andrasfalvy, B.K.; Magee, J.C. (2004). Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones. Journal of Physiology (Oxford). 559, 543-554.
Antonov I., Antonova I., Kandel E.R., Hawkins R.D. (2003). Activity-dependent presynaptic facilitation and hebbian LTP are both required and interact during classical conditioning in Aplysia. Neuron 37,135-47.
Bartsch D., Ghirardi M., Skehel P.A., Karl K.A., Herder S.P., Chen M., Bailey C.H., Kandel E.R. (1995). Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell. 83,979-92.
Bicker G. (1996). Transmitter-induced calcium signalling in cultured neurons of the insect brain. J Neurosci Methods. 69,33-41.
Blair, H.T., Schafe, G.E., Bauer, E.P., Rodrigues, S.M., and LeDoux, J.E. (2001). Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8, 229-242.
Bliss, T.V., and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39.
Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., Silva A.J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 79,59-68.
Boynton S., Tully T. (1992). latheo, a new gene involved in associative learning and memory in Drosophila melanogaster, identified from P element mutagenesis. Genetics. 131,655-72.
Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
Brandon, E.P., Idzerda, R.L., and McKnight, G.S. (1997). PKA isoforms, neural pathways, and behaviour: making the connection. Curr Opin Neurobiol 7, 397-403.
Brockie, P.J., Mellem, J.E., Hills, T., Madsen, D.M., and Maricq, A.V. (2001). The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31, 617-630.
Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J.P., Gunther, W., Seeburg, P.H., and Sakmann, B. (1992). Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257, 1415-1419.
Cammarota, M., Bevilaqua, L.R., Ardenghi, P., Paratcha, G., Levi de Stein, M., Izquierdo, I., and Medina, J.H. (2000). Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade. Brain Res Mol Brain Res 76, 36-46.
Cattaert, D., and Birman, S. (2001). Blockade of the central generator of locomotor rhythm by noncompetitive NMDA receptor antagonists in Drosophila larvae. J Neurobiol 48, 58-73.
Cayre M., Buckingham S.D., Yagodin S., Sattelle D.B. (1999). Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine, and dopamine. J Neurophysiol. 81,1-14.
Chiang, A.S., Liu, Y.C., Chiu, S.L., Hu, S.H., Huang, C.Y., and Hsieh, C.H. (2001). Three-dimensional mapping of brain neuropils in the cockroach, Diploptera punctata. J Comp Neurol 440, 1-11.
Chiang, A.S., Lin, W.Y., Liu, H.P., Pszczolkowski, M.A., Fu, T.F., Chiu, S.L., and Holbrook, G.L. (2002). Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc Natl Acad Sci U S A 99, 37-42.
Chiang, A.S., Blum, A., Barditch, J., Chen, Y.H., Chiu, S.L., Regulski, M., Armstrong, J.D., Tully, T., and Dubnau, J. (2004). radish encodes a phospholipase-A2 and defines a neural circuit involved in anesthesia-resistant memory. Curr Biol 14, 263-272.
Cho, W.L., Fu, T.F., Chiou, J.Y., and Chen, C.C. (1997). Molecular characterization of a defensin gene from mosquito, Aedes aegypti. Insect Biochem. Molec. Biol. 27, 351-358.
Connolly, J.B., Roberts, I.J., Armstrong, J.D., Kaiser, K., Forte, M., Tully, T., and O'Kane, C.J. (1996). Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104-2107.
Contestabile, A. (2000). Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res Brain Res Rev 32, 476-509.
Crittenden, J.R., Skoulakis, E.M., Han, K.A., Kalderon, D., and Davis, R.L. (1998). Tripartite mushroom body architecture revealed by antigenic markers. Learn Mem 5, 38-51.
Cull-Candy, S., Brickley, S., and Farrant, M. (2001). NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11, 327-335.
Dale, N., and Kandel, E.R. (1993). L-glutamate may be the fast excitatory transmitter of Aplysia sensory neurons. Proc Natl Acad Sci USA 90, 7163-7167.
Davis R.L. (1993). Mushroom bodies and Drosophila learning. Neuron. 11,1-14.
Davis R.L. (1996). Physiology and biochemistry of Drosophila learning mutants. Physiol Rev. 76,299-317.
Debanne, D., Daoudal, G., Sourdet, V., and Russier, M. (2003). Brain plasticity and ion channels. Journal of Physiology, Paris 97, 403-414.
de Belle, J.S., and Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692-695.
DeZazzo J., Sandstrom D., de Belle S., Velinzon K., Smith P., Grady L., DelVecchio M., Ramaswami M., Tully T. (2000). nalyot, a mutation of the Drosophila myb-related Adf1 transcription factor, disrupts synapse formation and olfactory memory. Neuron. 27,145-58.
Dingledine, R., Borges, K., Bowie, D., and Traynelis, S.F. (1999). The glutamate receptor ion channels. Pharmacol Rev 51, 7-61.
Drier, E.A., Tello, M.K., Cowan, M., Wu, P., Blace, N., Sacktor, T.C., and Yin, J.C. (2002). Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nat Neurosci 5, 316-324.
Dubnau, J., and Tully, T. (1998). Gene discovery in Drosophila: new insights for learning and memory. Annu Rev Neurosci 21, 407-444.
Dubnau, J., Grady, L., Kitamoto, T., and Tully, T. (2001). Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411, 476-480.
Everts I., Villmann C., Hollmann M. (1997). N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. Mol Pharmacol. 52, 861-73.
Ferrer-Montiel, A.V., Sun, W., and Montal, M. (1995). Molecular design of the N-methyl-D-aspartate receptor binding site for phencyclidine and dizolcipine. Proc Natl Acad Sci U S A 92, 8021-8025.
Foldes R.L., Adams S.L., Fantaske R.P., Kamboj R.K. (1994). Human N-methyl-D-aspartate receptor modulatory subunit hNR2A: cloning and sequencing of the cDNA and primary structure of the protein. Biochim Biophys Acta. 1223,155-9.
Frey U., Huang Y.Y., Kandel E.R. (1993). Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science. 260,1661-4.
Fu, T.F., Lin, W.Y., and Liu, H.P., and Chiang, A.S. (2001). Cloning and characterization of cDNA encoding the Drosophila NMDA receptor subunit 2. Paper presented at: Europ Dro Res Conf.
Grotewiel M.S., Beck C.D., Wu K.H., Zhu X.R., Davis R.L. (1998). Integrin-mediated short-term memory in Drosophila. Nature. 391,455-60.
Guo, H.F., Tong, J., Hannan, F., Luo, L., and Zhong, Y. (2000). A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403, 895-898.
Ha, T.J., Lovell,P., Kohn,A. and Moroz,L. (Unpublished). N-methyl-D-aspartate (NMDA) receptors in Aplysia californica
Hammer M., Menzel R. (1996). Learning and memory in the honeybee. J Neurosci. 15,1617-30.
Hardingham, G.E., Fukunaga, Y., and Bading, H. (2002). Extrasynaptic NRs oppose synaptic NRs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5, 405-414.
Heisenberg M. (2003). Mushroom body memoir: from maps to models. Nat Rev Neurosci. 4,266-75.
Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G., and Heinemann, S. (1993). Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943-954.
Homberg U. 1987. Stuucture and function of the central complex in insects. In: Gupta AP, editor. Arthropod brain: its evolution, development, structure, and function. New York: Wiley. p 347-367.
Huang Y.Y., Kandel E.R. (1994). Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem. 1,74-82.
Huerta P.T., Sun L.D., Wilson M.A., Tonegawa S. (2000). Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron. 25,473-80.
Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P., and Grant, S.G. (2000). Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3, 661-669.
Hynd M.R., Scott H.L., Dodd P.R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int. 45,583-95.
Isabel G., Pascual A., Preat T. (2004). Exclusive consolidated memory phases in Drosophila. Science. 304,1024-7.
Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., and et al. (1993). Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268, 2836-2843.
Kemp J.A., McKernan R.M. (2002). NMDA receptor pathways as drug targets. Nat Neurosci. Suppl,1039-42.
Kleckner, N.W., and Dingledine, R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835-837.
Kogan J.H., Frankland P.W., Blendy J.A., Coblentz J., Marowitz Z., Schutz G., Silva A.J. (1997). Spaced training induces normal long-term memory in CREB mutant mice. Curr Biol. 7,1-11.
Kullmann, D.M., Asztely, F., and Walker, M.C. (2000). The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD and epilepsy. Cell Mol Life Sci 57, 1551-1561.
Kumar,K.N., Tilakaratne,N., Johnson,P.S., Allen,A.E. and Michaelis,E.K. (1991) Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex. Nature 354, 70-73
Kuner, T., and Schoepfer, R. (1996). Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J Neurosci 16, 3549-3558.
Kutsuwada,T., Kashiwabuchi,N., Mori,H., Sakimura,K., Kushiya,E., Araki,K., Meguro,H., Masaki,H., Kumanishi,T., Arakawa,M. et al. (1992) Molecular diversity of the NMDA receptor channel. Nature 358, 36-41 (1992)
Kuryatov, A., Laube, B., Betz, H., and Kuhse, J. (1994). Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12, 1291-1300.
Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible neurotechnique cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461
Lerma, J., Morales, M., Ibarz, J. M., and Somohano, F. (1994). Rectification properties and Ca2+ permeability of glutamate receptor channels in hippocampal cells. European J. Neuroscience 6, 1080-1088.
Liu, L., Wong, T.P., Pozza, M.F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, and Y.P., Wang, Y.T. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021-1024.
Madueno, E., Papagiannakis, G., Rimmington, G., Saunders, R.D., Savakis, C., Siden-Kiamos, I., Skavdis, G., Spanos, L., Trenear, J., and Adam, P.(1995). A physical map of the X chromosome of Drosophila melanogaster: cosmid contigs and sequence tagged sites. Genetics 139, 1631-1647.
Malenka, R.C., and Nicoll, R.A. (1999). Long-term potentiation--a decade of progress? Science 285, 1870-1874.
Marcus R., Pedro S., and Imma P. (2002). Sequence and analysis of the 5' flanking and 5' intranslated regions of the rat N-methyl-D-aspatate receptor 2A gene. Gene 295, 135-142.
Martin, S.J., Grimwood, P.D., and Morris, R.G. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23, 649-711.
Maruo K., Nagata T., Yamamoto S., Nagai K., Yajima Y., Maruo S., Nishizaki T. (2003). Tunicamycin inhibits NMDA and AMPA receptor responses independently of N-glycosylation. Brain Res. 11, 294-7.
Massey, P.V., Johnson, B.E., Moult, P.R., Auberson, Y.P., Brown, M.W., Molnar, E., Collingridge, G.L., Bashir, Z.I. (2004). Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. Journal of Neuroscience. 24, 7821-7828.
Mayer, M.L. and Westbrook, G.L. (1987). Permeation and block of N-methyl D-aspartic acid receptor channels by divalent cations in mouse cultured central neurons. Journal of Neurosci (London). 394, 501-527.
Mayford, M., and Kandel, E.R. (1999). Genetic approaches to memory storage. Trends Genet 15, 463-470.
McBain, C.J., and Mayer, M.L. (1994). N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74, 723-760.
McGuire S.E., Le P.T., Davis R.L. (2001). The role of Drosophila mushroom body signaling in olfactory memory. Science. 293,1330-1330.
McGuire S.E., Le P.T., Osborn A.J., Matsumoto K., Davis R.L. (2003). Spatiotemporal rescue of memory dysfunction in Drosophila. Science. 302,1765-1768.
Monaghan, D.T., Bridges, R.J., and Cotman, C.W. (1989). The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29, 365-402.
Montarolo P.G., Goelet P., Castellucci V.F., Morgan J., Kandel E.R., Schacher S. (1986). A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science. 1986 234,1249-54.
Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeburg P.H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 256,1217-21.
Mori, H., Masaki, H., Yamakura, T., and Mishina, M. (1992). Identification by mutagenesis of a Mg(2+)-block site of the NMDA receptor channel. Nature 358, 673-675.
Mori, H., and Mishina, M. (1995). Structure and function of the NMDA receptor channel. Neuropharmacology 34, 1219-1237.
Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31-37.
Morris, R.G., Anderson, E., Lynch, G.S., and Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774-776.
Morris, R.G., Davis, S., and Butcher, S.P. (1991). Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? In Long-Term Potentiation: A Debate of Current Issues, M. Baudry, and J. Davis, eds. (Cambridge, Massachusetts, MIT Press), pp. 267-300.
Murphy G.G., Glanzman DL. (1997). Mediation of classical conditioning in Aplysia californica by long-term potentiation of sensorimotor synapses. Science 278, 467-71.
Newcomer, J.W., and Krystal, J.H. (2001). NMDA receptor regulation of memory and behavior in humans. Hippocampus 11, 529-542.
Nourry, C., Grant, S.G., and Borg, J.P. (2003). PDZ domain proteins: plug and play! Sci STKE 2003, RE7.
Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462-465.
Oleskevich S. (1999). Cholinergic synaptic transmission in insect mushroom bodies in vitro. J Neurophysiol. 82,1091-6.
Pascual A., Preat T. (2001). Localization of long-term memory within the Drosophila mushroom body. Science. 294,1115-7.
Patneau, D.K., and Mayer, M.L. (1990). Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10, 2385-2399.
Pearson W.R., Lipman D.J. (1988). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 85,2444-8.
Pfeiffer-Linn, C., and Glantz, R.M. (1991). An arthropod NMDA receptor. Synapse 9, 35-42.
Platenik, J., Kuramoto, N., and Yoneda, Y. (2000). Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci 67, 335-364.
Porter N.M., Thibault O., Thibault V., Chen K.C., Landfield P.W. (1997). Calcium channel density and hippocampal cell death with age in long-term culture. J Neurosci. 17,5629-39.
Poser, S., and Storm, D.R. (2001). Role of Ca2+-stimulated adenylyl cyclases in LTP and memory formation. Int J Dev Neurosci 19, 387-394.
Rampon C, Tsien JZ. (2000). Genetic analysis of learning behavior-induced structural plasticity. Hippocampus. 10,605-9.
Renn S.C., Armstrong J.D., Yang M., Wang Z., An X., Kaiser K., Taghert P.H. (1999). Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol. 41,189-207.
Riedel, G., Platt, B., and Micheau, J. (2003). Glutamate receptor function in learning and memory. Behav Brain Res 140, 1-47.
Roberts A.C., Glanzman D.L. (2003). Learning in Aplysia: looking at synaptic plasticity from both sides. Trends Neurosci 26, 662-70.
Rodrigues, S.M., Schafe, G.E., and LeDoux, J.E. (2001). Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci 21, 6889-6896.
Rorth, P. (1996). A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A 93, 12418-12422.
Sasner M, Buonanno A. (1996). Distinct N-methyl-D-aspartate receptor 2B subunit gene sequences confer neural and developmental specific expression. J Biol Chem. 271,21316-22.
Schulz, S., Siemer, H., Krug, M., and Hollt, V. (1999). Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo. J Neurosci 19, 5683-5692.
Schurmann, F.W. (2000). Acetylcholine, GABA, glutamate and NO as putative transmitters indicated by immunocytochemistry in the olfactory mushroom body system of the insect brain. Acta Biol Hung 51, 355-362.
Schuster, C.M., Ultsch, A., Schloss, P., Cox, J.A., Schmitt, B., and Betz, H. (1991). Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science 254, 112-114.
Schwaerzel, M., Heisenberg, M., and Zars, T. (2002). Extinction antagonizes olfactory memory at the subcellular level. Neuron 35, 951-960.
Scott, D.B., Blanpied, T.A., Swanson, G.T., Zhang, C., and Ehlers, M.D. (2001). An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21, 3063-3072.
Sheng, M., and Pak, D.T. (2000). Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu Rev Physiol 62, 755-778.
Sheng, M., and Sala, C. (2001). PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24, 1-29.
Shimizu E., Tang Y.P., Rampon C., Tsien J.Z. (2000). NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science. 290,1170-4.
Si, A., Helliwell, P., and Maleszka, R. (2004). Effects of NMDA receptor antagonists on olfactory learning and memory in the honeybee (Apis mellifera). Pharmacology, Biochemistry & Behavior. 77, 191-197.
Siesjo B.K. (1994). Calcium-mediated processes in neuronal degeneration. Ann N Y Acad Sci. 747,140-61.
Silva, A.J., Kogan, J.H., Frankland, P.W., and Kida, S. (1998). CREB and memory. Annu Rev Neurosci 21, 127-148.
Sinakevitch, I., Farris, S.M., and Strausfeld, N.J. (2001). Taurine-, aspartate- and glutamate-like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body. J Comp Neurol 439, 352-367.
Sinakevitch-Pean, I., Geffard, M., and Plotnikova, S.I. (2001). Localization of glutamate in the nervous system of the fly Drosophila melanogaster: An immunocytochemical study. Journal of Evolutionary Biochemistry and Physiology 37, 83-88.
Skoulakis E.M., Kalderon D., Davis R.L. (1993). Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron. 11,197-208.
Skoulakis E.M., Davis R.L. (1996). Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron. 17,931-44.
Soloviev,M.M., Brierley,M.J., Shao,Z.Y., Mellor,I.R., Volkova,T.M., Kamboj,R., Ishimaru,H., Sudan,H., Harris,J., Foldes,R.L., Grishin,E.V., Usherwood,P.N.R. and Barnard,E.A. (1996). Functional expression of a recombinant unitary glutamate receptor from Xenopus, which contains N-methyl-D-aspartate (NMDA) and non-NMDA receptor subunits. J. Biol. Chem. 271, 32572-32579
Standley, S., Roche, K.W., McCallum, J., Sans, N., and Wenthold, R.J. (2000). PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28, 887-898.
Stern-Bach, Y., Bettler, B., Hartley, M., Sheppard, P.O., O'Hara, P.J., and Heinemann, S.F. (1994). Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345-1357.
Stern P., Edwards F.A., Sakmann B. (1992). Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. J Physiol. 449,247-78.
Stewart, B.A., Atwood, H.L., Renger, J.J., Wang, J., and Wu, C.F. (1994). Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J Comp Physiol [A] 175, 179-191.
Strausfeld N.J. 1976. Atlas of an insect brain. Berlin:Springer-Verlag.
Strauss R., Heisenberg M. (1993). A higher control center of locomotor behavior in the Drosophila brain. J Neurosci. 13,1852-61.
Su H., O'Dowd D.K.. (2003). Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors. J Neurosci. 23,9246-53.
Suchanek B., Seeburg P.H., Sprengel R. (1995). Gene structure of the murine N-methyl D-aspartate receptor subunit NR2C. J Biol Chem. 270,41-4.
Takamatsu, Y., Kishimoto, Y., and Ohsako, S. (2003). Immunohistochemical study of Ca2+/calmodulin-dependent protein kinase II in the Drosophila brain using a specific monoclonal antibody. Brain Res 974, 99-116.
Thomas S., and Gunter, K. (2001). Innervation of the ring gland of Drosophila melanogaster. J. Comp. Neurol. 431, 481-491.
Troncoso J., and Maldonado H. (2002). Two related forms of memory in the crab Chasmagnathus are differentially affected by NMDA receptor antagonists. Pharmacol Biochem Behav 72, 251-65.
Tsien, J.Z., Huerta, P.T., and Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327-1338.
Tsien, J.Z. (2000). Linking Hebb's coincidence-detection to memory formation. Curr Opin Neurobiol 10, 266-273.
Tully, T., and Quinn, W.G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A] 157, 263-277.
Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell 79, 35-47.
Ultsch, A., Schuster, C.M., Laube, B., Betz, H., and Schmitt, B. (1993). Glutamate receptors of Drosophila melanogaster. Primary structure of a putative NMDA receptor protein expressed in the head of the adult fly. FEBS Lett 324, 171-177.
Volker, M., Lenz-Bohme, B., and Schmitt, B. (2000). Novel CNS glutamate receptor subunit genes of Drosophila melanogaster. J Neurochem 75, 1791-1799.
Walker, D.L., and Davis, M. (2000). Involvement of NMDA receptors within the amygdala in short- versus long-term memory for fear conditioning as assessed with fear-potentiated startle. Behav Neurosci 114, 1019-1033.
Wang J., Zugates C.T., Liang I.H., Lee C.H., Lee T. (2002). Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron. 33,559-71.
Waxman E.A., Lynch D.R. (2004) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist. 11,37-49.
Wismar, J., Lenz-Bohme, B., Fuchs, S., Betz, H., Schmitt, B. (1997). The F-element insertion in the Drosophila melanogaster NR-I gene leads to sublethality, female sterility and abnormal behaviour of the males during copulation. Europ. Dros. Res. Conf. 15: 61
Wittenberg, G.M., and Tsien, J.Z. (2002). An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci 25, 501-505.
Wollmuth, L.P., Kuner, T., and Sakmann, B. (1998). Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. J Physiol 506 ( Pt 1), 13-32.
Wood M.W., VanDongen H.M., VanDongen A.M. (1996). The 5'-untranslated region of the N-methyl-D-aspartate receptor NR2A subunit controls efficiency of translation. J Biol Chem. 271,8115-20.
Wu C.L. (2003). Immunohistochemical localization of NMDA receptors in the Drosophila brain. Mater's thesis of NTHU.
Yamakura, T., and Shimoji, K. (1999). Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol 59, 279-298.
Yamazaki,M., Mori,H., Araki,K., Mori,K.J. and Mishina,M. (1992). Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett. 300 , 39-45.
Yin J.C., Wallach J.S., Del Vecchio M., Wilder E.L., Zhou H., Quinn W.G., Tully T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell. 79,49-58.
Yin J.C., Wallach J.S., Wilder E.L., Klingensmith J., Dang D., Perrimon N., Zhou H., Tully T., Quinn W.G. (1995). A Drosophila CREB/CREM homolog encodes multiple isoforms, including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Mol Cell Biol. 15,5123-30.
Yin, J.C., and Tully, T. (1996). CREB and the formation of long-term memory. Curr Opin Neurobiol 6, 264-268.
Yu D., Baird G.S., Tsien R.Y., Davis R.L. (2003). Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J Neurosci. 23,64-72.
Zhang C.X. and Hsieh T.S (2000). in Drosophila Protocols (Sullivan W. et al.) pp. 563-569, Cold Spring Harbor Laboratory Press, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔