(34.239.176.198) 您好!臺灣時間:2021/04/23 20:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李維真
研究生(外文):Wei-Zhen Lee
論文名稱:以丙氨酸替換突變法分析綠豆液泡焦磷酸水解酶第十一穿膜區段
論文名稱(外文):Characterization of Transmembrane Domain 11 of the Mung Bean Vacuolar H+-Pyrophosphatase by Alanine-substituted Mutagenesis
指導教授:潘榮隆潘榮隆引用關係
指導教授(外文):Rong-Long Pan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:48
中文關鍵詞:液泡焦磷酸水解酶穿膜區螺旋環柱定點突變
外文關鍵詞:vacuolepyrophosphatasetransmembrane domainhelical wheelsite-directed mutagenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
植物及真菌類細胞存在著大型的液泡,液泡膜上帶有兩種氫離子唧筒,分別是液泡焦磷酸水解酶 (簡稱V-PPase) 及液泡腺苷三磷酸水解酶 (簡稱V-ATPase)。它們負責將氫離子由細胞質送入液泡中,產生膜電位差。V-PPase以簡單、低成本的焦磷酸 (簡稱PPi) 為受質,轉成輸送氫離子所需的能量。此外在結構上,V-PPase亦是一約80 kDa、且具14-16穿膜區段之多肽鏈組成。這樣的酵素無異提供一個很棒的模型,幫助我們研究「水解PPi」與「輸送氫離子」之間的偶合機制。在這篇論文中,我們使用「丙胺酸替換突變法」,將綠豆V-PPase在第十一穿膜區內之所有胺基酸逐一替換。所產生的突變株被送入酵母菌內進行異體表現,並從中萃取微粒體,此微粒體內含大量突變的V-PPase,可供我們進行各項試驗。首先,我們一一測其「PPi水解活性」及「氫離子傳送作用」,並以此算出偶合效率。然而在這些突變株中,唯有K541A的酵素活性有明顯下降,此氨基酸 (Lys-541) 對V-PPase的重要性是可想而知。 此外,我們也找出五個胺基酸,分別是Ser-547、Leu-553、Leu-555、Phe-556及Ala-558,可能與酵素的偶合機制有關。接下來,我們繼續對這些突變株的其他特性進行探討。在「離子效應」的實驗中,鉀離子可促進酵素的活性,但促進的倍數隨各個突變株而異。在「熱穩定性」的實驗中,我發現V560A 及S561A這兩個突變株對熱的抵抗力比野生株來的高。另外,在酵素酶切實驗中,野生株與所有突變株皆可被酵素切動,然而,一旦加入V-PPase之受質,此受質將保護野生株與所有突變株的V-PPase不被酵素所切。收集這些實驗數據,可幫助我們對V-PPase的作用機制有更多的了解。
A vacuole is a membrane-enclosed fluid-filled cavity found in the cells of plants and fungi. There are two proton pumps in the tonoplast, vaculoar H+-pyrophosphatases (V-PPase; EC 3.6.1.1) and vaculoar H+-ATPase (V-ATPase; EC 3.6.1.3). They play a main role in catalyzing electrogenic H+-translocation from the cytosol to the vacuolar lumen to generate an inside-acidic and inside-positive membrane potential. V-PPase uses a simple, low-cost substrate pyrophosphate (PPi) as an energy source. Meanwhile, V-PPase contains only a single type of polypeptide of 80 kDa with 14-16 transmembrane domains (TMs) rendering a good model for studying the coupling mechanism between proton translocation and PPi hydrolysis. Among these transmembrane domains, TM 11 is highly conserved in many organisms. In this study, the residues in TM 11 of mung bean V-PPase were mutated by means of alanine-substituted mutagenesis. Mutated genes were over-expressed in Saccharomyces cerevisiae, and the V-PPase-enriched microsomes were prepared. The PPi hydrolysis activities, proton translocation, and coupling efficiency of the mutant V-PPases were then determined. K541A was the only mutant whose enzymatic activity decreased dramatically. It is apparent that the residue Lys-541 is important for the function of V-PPase. In addition, five significant residues (Ser-547, Leu-553, Leu-555, Phe-556 and Ala-558) were identified presumably to be involved in coupling mechanism. Furthermore, the ion effects, thermostability, and proteolytic analysis of these mutants were measured. There are some variations in degree of K+-stimulation for these mutants. Besides, we also found that the thermal stability of V560A and S561A is much higher than wild type. The susceptibilities of several mutant V-PPases to trypsin digestion in the absence of physiological substrate Mg2PPi were different, suggesting the variation in their conformation. The importance of each amino acid residues along TM11 is discussed. A working model of V-PPase is proposed accordingly.
Introduction------------------1
Materials and Methods---------7
Results----------------------15
Discussion-------------------22
References-------------------27
Figures and Tables-----------33
Baltscheffsky, M., Nadanaciva, S., and Schultz, A. (1998) A pyrophosphate synthase gene: molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum. Biochim. Biophys. Acta 1364:301–306
Barik, S. (1997) PCR Cloning Protocols: From Molecular Cloning to Genetic Engineering (White, B. A. eds) pp.173-182, Humana Press Inc., New Jersey, USA.
Belogurov, G. A., and Lahti, R. (2002) A lysine substitute for K+. A 460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J. Biol. Chem. 277:49651-49654
Britten, C. J., Turner, J. C., Rea, P. A. (1989) Identification and purification of substrate-binding subunit of higher plant H+-translocating inorganic pyrophosohatase. FEBS Lett. 256:200-206
Carden, D. E., Walker, D. J., Flowers, T. J., and Miller, A. J. (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol. 131:676-683
Claros, M. G., and von Heijne, G. (1994) TopPred II: An improved software for membrane protein structure predictions. CABIOS 10:685-686
Cooper, A., and Bussey, H. (1992) Yeast Kex1p is a Golgi-associated membrane protein: deletions in a cytoplasmic targeting domain result in mislocalization to the vacuolar membrane. J. Cell Biol. 119:1459-1468
Drozdowicz, Y. M., Lu, Y. P., Patel, V., Fitz-Gibbon, S., Miller, J. H., and Rea, P. A. (1999) A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. FEBS Lett. 460:505-512
Drozdowicz, Y. M., and Rea, P. A. (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci. 6:206-211
Fiske, C. H., and Subbarow, Y. (1925) The colorimetric determination of phosphorous. J. Biol. Chem. 66:378-400
Gordon-Weeks, R., Steele, S. H., and Leigh, R. A. (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase. Plant Physiol. 111:195-202
Hsiao, Y. Y., Van, R. C., Hung, S. H., Lin, H. H., and Pan, R. L. (2004) Roles of histidine residues in plant vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1608:190-199
Hsiao, Y. Y., Van, R. C., Hung, H. H., and Pan, R. L. (2002) Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue. J. Protein Chem. 21:51-58
Ikeda M, Rahman M. H, Moritani C, Umami K, Tanimura Y, Akagi R, Tanaka Y, Maeshima M, and Watanabe, Y. (1999) A vacuolar H+-pyrophosphatase in Acetabularia acetabulum: Molecular cloning and comparison with higher plants and a bacterium. J. Exp. Bot. 50: 139-140
Kim, E. J., Zhen, R. G., and Rea, P. A. (1995) Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J. Biol. Chem. 270:2630-2635
Kim, E. J., Zhen, R. G., and Rea, P. A. (1994) Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport. Proc. Natl. Acad. Sci. USA 91:6128-6132
Kim, Y., Kim, E. J., and Rea, P. A. (1994) Isolation and characterization of cDNA encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol. 106:375-382
Kuo, S. Y., and Pan, R. L. (1990) An essential arginyl residue in the tonoplast pyrophosphatase from etiolated mung bean seedlings. Plant Physiol. 93:1128-1133
Laemmli, U. K. (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature (London) 222:680-685
Larson, E., Howlett, B., and Jagendorf, A. T. (1986) Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem. 155:243-248
Maeshima, M. (1990) Development of vacuolar membranes during elongation of cells in mung bean hypocotyls. Plant Cell Physiol. 31:311-317
Maeshima, M. (2000) Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1465:37-51
Maeshima, M. (2001) Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:469-497
Maeshima, M., and Yoshida, S. (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J. Biol. Chem. 264:20068-20073
Mimura, H., Nakanishi, Y., Hirono, M., and Maeshima, M. (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J. Biol. Chem. 279:35106-35112
Motta, L. S., da Silva, W. S., Oliveira, D. M. P., de Souza, W., and Machado, E. A. (2004) A new model for proton pumping in animal cells: the role of pyrophosphate. Insect Biochem. Mol. Biol. 34:19-27
Nakanishi, Y., Matsuda, N., Aizawa, K., Kashiyama, T., Yamamoto, K., Mimura, T., Ikeda, M., and Maeshima, M. (1999) Molecular cloning and sequencing of the cDNA for vacuolar H+-pyrophosphatase from Chara corallina. Biochim. Biophys. Acta 1418:245-250
Nakanishi, Y., Saijo, T., Wada, Y., and Maeshima M. (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J. Biol. Chem. 276:7654-7660
Nishi, T., and Forgac, M. (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3:94-103
Paris, N., Stanley, C. M., Jones, R. L., and Rogers, J. C. (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563-572
Rea, P. A., Kim, Y., Sarafian, V., Poole, R. J., Davies, J. M., and Sanders, D. (1992) Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem. Sci. 17:348-353.
Roberts, C. J., Nothwehr, S. F., and Stevens, T. H. (1992) Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment. J. Cell Biol. 119:69-83
Sarafian, V., and Poole, R. J. (1989) Purification of an H+-translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol. 91:34-38
Scott, D. A., de Souza, W., Benchimol, M., Zhong, L., Lu, H. G., Moreno, S. N., and Docampo, R. (1998) Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J. Biol. Chem. 273:22151-22158
Shiratake, K., Kanayama, Y., Maeshima, M., and Yamaki, S. (1997) Changes in H+-pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit. Plant Cell Physiol. 38:1039-1045
Tzeng, C. M., Yang, C. Y., Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. S., Ma, J. T., and Pan, R. L. (1996) Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation. Biochem. J. 316:143-147
Walker, D. J., Leigh, R. A., and Miller, A. J. (1996) Potassium homeostasis in vacuolated plant cells. Proc. Natl. Acad. Sci. USA 93:10510-10514
Wang, B., Lüttge, U., and Ratajczak, R. (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J. Exp. Bot. 52:2355-2365
Wang, M. Y., Lin, Y. H., Chow, W. M., Chung, T. P., and Pan, R. L. (1989) Purification and characterization of tonoplast ATPase from etiolated mung bean seedlings. Plant Physiol. 90:475-481
Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. H., Tam, M. F., and Pan, R. L. (1999) Localization of a carboxylic residue possibly involved in the inhibition of vacuolar H+-pyrophosphatase by N,N’-dicyclohexylcarbodi- imide. Biochem. J. 342:641-646
Yang, S. J., Jiang, S. S., Tzeng, C. M., Kuo, S. Y., and Pan, R. L. (1996) Involvement of tyrosine residue in the inhibition of plant vacuolar H+-pyrophosphatase by tetranitromethane. Biochim. Biophys. Acta 1294:89-97
Yang, S. J., Jiang, S. S., Van, R. C., Hsiao, Y. Y., and Pan, R. L. (2000) A lysine residue involved in the inhibition of vacuolar H+-pyrophosphatase by fluorescein 5’-isothiocyanate. Biochim. Biophys. Acta 1460:375-383
Zhen, R. G., Kim, E. J., and Rea, P. A. (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N’-dicyclohexylcarbodiimide. J. Biol. Chem. 272:22340-22348
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔