跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:谷祖賢
研究生(外文):Tsu-Hsien Ku
論文名稱:導電高分子在奈米電極間電荷傳導特性之研究
論文名稱(外文):Study of Charge Transport in Conducting Polymer between Nanoelectrodes
指導教授:林鶴南
指導教授(外文):Heh-Nan Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:55
中文關鍵詞:原子力顯微術奈米電極導電高分子電荷載子遷移率
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
我們結合了一般的金屬剝除(lift-off)製成,與原子力顯微術(atomic force microscopy)的奈米微影技術,輕易地就製作出可任意調變尺寸的金奈米電極,並將此電極運用在poly [2-methoxy, 5-(2′-ethyl-hexoxy)-1, 4-phenylenevinylene] (MEH-PPV)導電高分子的電洞傳導特性之研究。
我們以滴注法(drop-casting)來成膜,實驗結果顯示,濃度稀薄(1.5 mg/l)的樣品,呈現出空間電荷限制電流(space charge limited current)的傳輸現象,並且由Poole-Frenkel law所估算出的無電場下電荷載子遷移率(zero-field mobility)大約在10�{6~10�{3 cm2/V�泅,要比先前曾發表過的量測結果,大上一到四個數量級,但電場係數(electric field coefficient)約等於104 V/cm,卻與先前的結果相近。除此之外,還觀察到電荷載子遷移率,會隨著電極間距的縮小而增加。相對地,濃度稠密(1.5 mg/ml)的樣品,則遵守著歐姆定律(Ohm’s law),並且計算出大約等於10 S/cm的驚人的導電率。
我們電性量測的實驗,在常溫下,分別在大氣或是惰性氣氛環境下進行,最終驗證出,由於水平式奈米電極的效應,使得導電高分子的電荷傳輸特性大為地提升,更重要的是,觀察到接近以MEH-PPV單一高分子鏈,傳輸的電荷載子遷移率。
We successfully fabricate gold nanoelectrodes with controllable dimensions by a combination of lift-off process and atomic force microscopy nanolithography. By making use of these nanoelectrodes, we study the hole transport in the conducting polymer MEH-PPV. It is found that dilute samples (1.5 mg/l) reveal space-charge-limited conduction, and a hole mobility obtained at a gap of 70 nm is as high as 1 cm2/Vs at a field of 9×105 V/cm. This value is comparable to the hole mobility of single MEH-PPV chains. Furthermore, we also observe mobility enhancement as the gap is reduced. On the other hand, high-concentration samples (1.5 mg/ml) present even better electrical properties and obey the Ohm’s law. We find amazing conductivities calculated to be around 10 S/cm. The unprecedented electrical behavior observed in the present study is believed to be due to combined effects of chain alignment along the substrate and nanoscale gaps.
目錄……………………………………………………………………………………I
表目錄………………………………………………………………………….……III
圖目錄………………………………………………………………………...……..IV

第一章 簡介
1-1 前言………………………………………………………………………………1
1-2 研究動機…………………………………………………………………………4
第二章 文獻回顧與原理
2-1 導電高分子的現況發展…………………………………………………………5
2-1-1 高分子發光二極體 ( Polymeric Light Emitting Diode )……………...……5
2-1-2 高分子薄膜電晶體 ( Polymeric Thin Film Transistor )……………………7
2-1-3 導電高分子強化之超級電容器 ( Supercapacitor )…………………………9
2-1-4 其他…………………………………………………………………………...10
2-2 導電高分子電荷傳導機制……………………………………………………..11
2-2-1 歐姆傳導定律 ( Ohmic Transport Theory )………………………...……..11
2-2-2 空間電荷限制電流傳導理論 ( Space Charge Limited Current Theory ).12
2-2-3 Poole-Frenkel Law…………………………………………………………...13
2-3 原子力顯微術介紹 ( Atomic Force Microscopy )…………………………...16
2-4 原子力顯微術機械力微影技術之發展………………………………………..18

第三章 實驗步驟
3-1 實驗儀器………………………………………………………………………..20
3-2 實驗流程………………………………………………………………………..21
3-2-1 電極製作……………………………………………………………………...21
3-2-2 導電高分子溶液配製………………………………………………………..23
3-2-3 元件製作……………………………………………………………………...23
3-2-4 電性量測……………………………………………………………………...24
第四章 結果與討論
4-1 奈米電極………………………………………………………………………..25
4-2 滴注法 ( Drop-casting ) 成膜………………………………………………...31
4-3 滴注量與膜厚之關係…………………………………………………………..33
4-4 空間電荷限制電流傳導現象…………………………………………………..35
4-5 短通道現象……………………………………………………………………..38
4-6 歐姆傳導現象…………………………………………………………………..39
4-7 惰性氣氛環境…………………………………………………………………..42
4-8 其它條件………………………...……………………………………………...45
第五章 結論與未來研究方向………………………..………………………..48
第六章 參考文獻……………………….………………………………………..50


表目錄
表4-1 滴注量相對於溶液濃度…………………………………………………….33
表4-2 濃度為1.5 mg/l之樣品的實驗結果………………………………………...35
表4-3 濃度為1.5 mg/ml之樣品的實驗結果……………………………………...39
表4-4 濃度為1.5 mg/ml之樣品在惰性氣氛下的實驗結果……………………...42
表4-5 其它條件下樣品的實驗結果……………………………………………….45
表4-6 實驗結果總整理…………………………………………………………….47

















圖目錄
圖1-1 導電高分子導電率範圍……………………………………………………...1
圖1-2 導電高分子共軛結構………………………………………………………...2
圖1-3 MEH-PPV 結構圖……………………………………………………………3
圖2-1 單層元件結構………………………………………………………………...6
圖2-2 常見的發光高分子…………………………………………………………...6
圖2-3 有機薄膜電晶體結構………………………………………………………...8
圖2-4 有機薄膜電晶體電壓-電流曲線……………………………………………..8
圖2-5 各類型電能供應器比較圖…………………………………………………...9
圖2-6 原子力顯微鏡儀器構造圖………………………………………………….16
圖3-1 奈米電極製作流程圖……………………………………………………….22
圖3-2 元件製作流程圖…………………………………………………………….23
圖3-3 電洞單一載子元件………………………………………………………….24
圖4-1 不同寬度之奈米電極……………………………………………………….27
圖4-2 不同厚度之奈米電極……………………………………………………….28
圖4-3 失敗的奈米電極…………………………………………………………….29
圖4-4 不同間距之奈米電極……………………………………………………….30圖4-5 極不均勻的高分子膜……………………………………………………….32圖4-6 均勻的高分子膜…………………………………………………………….32
圖4-7 高分子膜厚度……………………………………………………………….34
圖4-8 濃度為1.5 mg/l之樣品在大氣下的電性量測結果………………………...37
圖4-9 濃度為1.5 mg/ml之樣品在大氣下的電性量測結果……………………...41
圖4-10 濃度為1.5 mg/ml之樣品在惰性氣氛下的電性量測結果……………….44
圖4-11 其它條件下樣品的電性量測結果…………………………………………46
1. Nobel e-Museum web: http://www.nobel.se/chemistry/laureates/2000/
2. 陳壽安,物理雙月刊 第二十三卷二期,312 (2001).
3. A. Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett. 49, 1210 (1986).
4. Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
5. P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B 55, R656 (1997).
6. M. Zhu, T. Cui, and K. Varahramyan, Microelectron. Eng. 75, 269 (2004).
7. G. Wang, J. Swensen, D. Moses, and A. J. Heeger, J. Appl. Phys. 93, 6137 (2003).
8. D. McBranch, I. H. Campbell, D. L. Smith, and J. P. Ferraris, Appl. Phys. Lett. 66, 1175 (1995).
9. C. Y. Yang, F. Hide, M. A. Diaz-Garcia, A. J. Heeger, and Y. Cao, Polymer 39, 2299 (1998).
10. K. L. Tzeng, H. F. Meng, M. F. Tzeng, Y. S. Chen, C. H. Liu, S. F. Horng, S. M. Chang, C. S. Hsu, and C. C. Chi, Appl. Phys. Lett. 84, 619 (2004).
11. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Appl. Phys. Lett. 72, 1863 (1998).
12. D. Braun and A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
13. M. Tammer and A. P. Monkman, Adv. Mater. 14, 210 (2002).
14. A. Ltaief, A. Bouazizi, J. Davenas, R. B. Chaabane, and H. B. Ouada, Synth. Met. 147, 261 (2004).
15. R. J. O. M. Hoofman, M. P. de Haas, L. D. A. Siebbeles, and J. M. Warman, Nature 392, 54 (1998).
16. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
17. J. Kalinowski, J. Phys. D: Appl. Phys. 32, R179 (1999).
18. F. Huang, L. Hou, H. Wu, X. Wang, H. Shen, W. Cao, W. Yang, and Y. Cao, J. Am. Chem. Soc. 126, 9845 (2004).
19. H. Yan, B. J. Scott, Q. Huang, and T. J. Marks, Adv. Mater. 16, 1948 (2004).
20. C. J. Hung, J. Mater. Sci. Lett. 22, 1423 (2003).
21. J. Kim, J. Lee, C. W. Han, N. Y. Lee, and I.-J. Chung, Appl. Phys. Lett. 82, 4328 (2003).
22. A. Dodabalapur, L. Torsi, and H. E. Katz, Science 268, 270 (1995).
23. D. Kinpp, R. A. Street, A. Volkel, and J. Ho, J. Appl. Phys. 93, 347 (2003).
24. Z. L. Li, S. C. Yang, H. F. Meng, Y. S. Chen, Y. Z. Yang, C. H. Liu, S. F. Horng, C. S. Hsu, L. C. Chen, J. P. Hu, and R. H. Lee, Appl. Phys. Lett. 84, 3558 (2004).
25. Y. H. Kim, S. K. Park, D. G. Moon, W. K. Kim, and J. I. Han, Jpn. J. Appl. Phys. 43, 3605 (2004).
26. H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998).
27. T. G. Backlund, H. G. O. Sandberg, R. Osterbacka, H. Stubb, T. Makela, and S. Jussila, Synth. Met. 148, 87 (2005).
28. Y. Xu and P. R. Berger, J. Appl. Phys. 95, 1497 (2004).
29. M. M.-Torrent, D. den Boer, M. Durkut, P. Hadley, and A. P. H. J. Schenning, Nanotechnology 15, S265 (2004).
30. M. D. Austin and S. Y. Chou, Appl. Phys. Lett. 81, 4431 (2002).
31. H. Yanagi and Y. Kawai, Jpn. J. Appl. Phys. 43, L1575 (2004).
32. S. Scheinert, T. Doll, A. Scherer, G. Paasch, and I. Horselmann, Appl. Phys. Lett. 84, 4427 (2004).
33. Y. Chen, W. W. Zhu, S. Xiao, and I. Shin, J. Vac. Sci. Technol. A 22, 768 (2004).
34. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
35. T. Sakanoue, E. Fujiwara, R. Yamada, and H. Tada, Appl. Phys. Lett. 84, 3037 (2004).
36. M. Ahles, A. Hepp, R. Schmechel, and H. von Seggern, Appl. Phys. Lett. 84, 428 (2004).
37. I. Tanahashi, A. Yoshida, and A. Nishino, J. Electrochem. Soc. 137, 3052 (1990).
38. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, J. Power Sources 47, 89 (1994).
39. H. Shi, Electrochim. Acta 41, 1633 (1996).
40. A. Lewandowski, M. Zajder, E. Frackowiak, and F. Beguin, Electrochim. Acta 46, 2777 (2001).
41. W.-C. Chen, T.-C. Wen, and H. Teng, Electrochim. Acta 48, 641 (2003).
42. W.-C. Chen and T.-C. Wen, J. Power Sources 117, 273 (2003).
43. R. Kotz, M. Carlen, Electrochim. Acta 45, 2483 (2000).
44. S. C. Jain, T. Aernout, A. K. Kapoor, V. Kumar, W. Geens, J.Poortmans, and R. Mertens, Synth. Met. 148, 245 (2005).
45. Y. Sakurai, H.-S. Jung, T. Shimanouchi, T. Inoguchi, S. Morita, R. Kuboi, K. Natsukawa, Sens. Actuators B 83, 270 (2002).
46. M. Atreya, S. Li, E. T. Kang, K. G. Neoh, Z. H. Ma, K. L. Tan, and W. Huang, Polym. Degrad. Stab. 65, 287 (1999).
47. K. Tada and M. Onoda, J. Appl. Phys. 86, 3134 (1999).
48. I. D. Parker, J. Appl. Phys. 75, 1656 (1994).
49. P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
50. J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Malliaras, S. A. Carter, and L. Bozano, Synth. Met. 111�{112, 289 (2000).
51. D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys. 86, 5116 (1999).
52. Y. He and J. Kanicki, Appl. Phys. Lett. 76, 661 (2000).
53. A. Rose, Phys. Rev. 97, 1538 (1955).
54. H. C. F. Martens, J. N. Huiberts, P. W. M. Blom, Appl. Phys. Lett. 77, 1852 (2000).
55. P. W. M. Blom, H. C. F. Martens, J. N. Huiberts, Synth. Met. 121, 1621 (2001).
56. K. C. Kao and W. Hwang, Electrical Transport in Solids (1981).
57. A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, 6326 (1997).
58. D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, Synth. Met. 138, 299 (2003).
59. H.-N. Lin, H.-L. Lin, S.-S. Wang, L.-S. Yu, G.-Y. Perng, S.-A. Chen, and S.-H. Chen, Appl. Phys. Lett. 81, 2572 (2002).
60. M. Gailberger and H. Bassler, Phys. Rev. B 44, 8643 (1991).
61. C. H. Tan, A. R. Inigo, W. Fann, P.-K. Wei, G.-Y. Perng, and S.-A. Chen, Org. Electron. 3, 81 (2002).
62. L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, and P. J. Brock, Appl. Phys. Lett. 74, 1132 (1999).
63. H. Bassler, Phys. Stat. Sol. (b) 175, 15 (1993).
64. Y. N. Gartstein and E. M. Conwell, Chem. Phys. Lett. 245, 351 (1995).
65. S. V. Rakhmanova and E. M. Conwell, Synth. Met. 116, 389 (2001).
66. 林鶴南、李龍正、劉克迅,科儀新知 第十七卷三期,12 (1995).
67. H.-N. Lin, S.-H. Chen, S.-T. Ho, P.-R. Chen, and I-N. Lin, J. Vac. Sci.Technol. B 21, 916 (2003).
68. S.-T. Ho, Y.-H. Chang, and H.-N. Lin, J. Appl. Phys. 96, 3562 (2004).
69. H.-N. Lin, Y. H. Chiou, B.-M. Chen, H.-P. D. Shieh, and C.-R. Chang, J. Appl. Phys. 83, 4997 (1998).
70. R. Buzio, C. Boragno, and U. Valbusa, Wear 254, 981 (2003).
71. Z. Wei, C. Wang, and C. Bai, Langmuir 17, 3945 (2001).
72. M. Cavallini, M. Facchini, M. Massi, and F. Biscarini, Synth. Met. 146, 283 (2004).
73. K. W. Guarini, C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20, 2788 (2002).
74. P. B. Fischer and S. Y. Chou, Appl. Phys. Lett. 62, 2989 (1993).
75. P. Ruchhoeft, J. C. Wolfe, and R. Bass, J. Vac. Sci. Technol. B 19, 2529 (2001).
76. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).
77. M. A. McCord and R. F. W. Pease, J. Vac. Sci. Technol. B 6, 293 (1988).
78. Q. Li, J. Zheng, and Z. Liu, Langmuir 19, 166 (2003).
79. J.-H. Hsu, H.-W. Lai, H.-N. Lin, C.-C. Chuang, and J.-H. Huang, J. Vac. Sci. Technol. B 21, 2599 (2003).
80. R. Magno and B. R. Bennett, Appl. Phys. Lett. 70, 1855 (1997).
81. Y. Kim and C. M. Lieber, Science 257, 375 (1992).
82. J.-H. Hsu, C.-Y. Lin, and H.-N. Lin, J. Vac. Sci. Technol. B 22, 2768 (2004).
83. A. Notargiacomo, V. Foglietti, E. Cianci, G. Capellini, M. Adami, R. Faraci, F. Evangelisti, and C. Nicolini, Nanotechnology 10, 458 (1999).
84. E. Dubois and J.-L. Bubbendorff, Solid-State Electron. 43, 1085 (1999).
85. A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and J. Alexander, Appl. Phys. Lett. 61, 2293 (1992).
86. M. Ara, H. Graaf, and H. Tada, Appl. Phys. Lett. 80, 2565 (2002).
87. M. Wendel, S. Kuhn, H. Lorenz, J. P. Kotthaus, and M. Holland, Appl. Phys. Lett. 65, 1775 (1994).
88. V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996).
89. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature 401, 685 (1999).
90. N. S. Murthy and H. Minor, Polymer 31, 996 (1990).
91. S. Roth, One-Dimensional Metals; VCH: Weinheim, (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top