跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 21:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃聆惠
論文名稱:磁控濺鍍BZT薄膜製成MFIS變容器之高頻與微波頻段特性研究
論文名稱(外文):High Frequency and Microwave Frequency Characteristics of Ba(Zr,Ti)O3 Thin Films deposited by RF Magnetron Sputtering for MFIS varactors
指導教授:吳泰伯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:176
中文關鍵詞:MFIS變容器BZT高頻微波
相關次數:
  • 被引用被引用:2
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本實驗為以磁控濺鍍法鍍製BZT薄膜在高阻值Si-based基板上,製作成MFIS(metal-ferroelectric-insulator-semiconductor)之變容器,觀測其在高頻與微波頻段下的特性。此可應用於矽基板整合鐵電微波元件上,利用製程穩定性高、控制容易的半導體製程技術將薄膜型被動元件整合在單一晶片上,可滿足高頻通訊被動元件嚴格之規格要求。
實驗結果發現BZT在Si-based基板之MFIS變容器結構中,大部分的調變率來自Si半導體特性經由back-to-back串接合併的貢獻,因此oxide中的各種charge如oxide trapped charge、fixed oxide charge、mobile ion charge會造成平帶電壓之偏移,使得串接後的C-V圖形偏移或有遲滯的現象,其loss機制亦受這些charge的影響,因此未來若能控制製程條件如鍍膜溫度,退火條件以控制oxide中的charge量,則可進而改善其調變率或是loss值,即可應用在低損耗的微波傳輸線上。
目錄
摘要………………………………………………………………… I
致謝………………………………………………………………… II
目錄………………………………………………………………… IV
表目錄……………………………………………………………… VII
圖目錄……………………………………………………………… VIII
第一章 緒論………………………………………………………… 1
第二章 文獻回顧…………………………………………………… 5
2.1矽基板整合鐵電微波元件……………………………………… 5
2.1.1微波應用中鐵電特性的優勢………………………………… 6
2.1.2整合問題………………………………………………………… 9
2.1.3以Si基板為調變鐵電元件………………………………… 10
2.1.4 Si基板整合鐵電變容器…………………………………… 11
2.2 Si-based基板………………………………………………… 13
2.3鐵電材料的研究及發展………………………………………… 14
2.3.1鐵電材料的結構與特性……………………………………… 14
2.3.2鈦酸鋇系鐵電材料………………………………………… 17
2.3.2-1鈣鈦礦結構………….…………………………………… 17
2.3.2-2鈦酸鋇…………………………………………………… 18
2.3.2-3 鋯鈦酸鋇……………………………………………… 19
2.3.2-4 擴散性相變化………………………………………… 20
2.3.4 介電性質……………...…………………………………… 21
2.3.4-1極化…………………………………………………… 21
2.3.4-2介電常數與介電損失………………………………… 23
2.4鐵電薄膜在Si基板共平面結構上的電性機制……………… 25
2.5指叉結構電容量測模型—CAD model……………………… 26第三章 實驗流程………………………………………………… 52
3.1 基板之製作…………………………………………………… 52
3.2 BZT薄膜之製備.………….………………………………… 52
3.2.1 BZT靶材…………………………………………………… 52
3.2.2 BZT薄膜…………………………………………………… 53
3.3 上電極之製作………………………………………………… 54
3.3.1 Lift off法………………………………………………… 54
3.3.2 Wet etchimg法…………………………………………… 54
3.4薄膜分析量測…….…………………………………………… 55
3.4.1薄膜結構分析……………………………………………… 55
3.4.2成分分析…………………………………………………… 56
3.4.3 厚度量測及微觀結構—SEM分析……………………… 56
3.4.4電性分析…………………………………………………… 57
第四章 結果與討論……………………………………………… 71
4.1薄膜成分分析………………………………………………… 71
4.2 Lift off製程與Wet etching製成之比較..………………… 71
4.3各種trapped charge對BZT鐵電薄膜在Si基板共平面結構
的電性影響機制與模擬……………………………………… 72
4.4共平面結構上的loss機制…………………………………… 82
4.5高頻(1M Hz)特性量測與分析..……………………………… 83
4.5.1基板之電性比較(無BZT薄膜)…………………………… 83
4.5.2不同BZT鍍膜溫度對電性之影響………………………… 85
4.5.2-1結構分析……………………………………………… 85
4.5.2-2 BZT薄膜MIM結構之P-E分析與C-V分析…………… 85
4.5.2-3 BZT薄膜MIS結構高頻C-V分析……………………… 87
4.5.3不同鍍膜時間對電性之影響…………………………… 90
4.5.3-1結構分析……………………………………………… 91
4.5.3-2 C-V量測比較………………………………………… 91
4.6微波頻段(1G-25G Hz)特性量測與分析……………………… 93
4.6.1在微波頻段下HRS響應解釋……………………………… 94
4.6.1-1串聯阻抗的推導……………………………………… 94
4.6.1-2推導R與C’值………………………………………… 97
第五章 結論……………………………………………………… 170
參考文獻…………………………………………………………… 172
1. www.agilematerials.com
2. B. Acikel, Y. Liu, A. C. Nagra, T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A.
York, Dig. IEEE IMS’, P 1191, (2001)
3. F. W. Van Keus, R. R. Romanofsky, D. Y. Bohman, M. D. Winters, and F. A.
Miranda, Appl. Phys. Lett. 71, 3075 (1997).
4. E. Carlsson, P. Petrov, R. Chakalov, P. Larsson, Z. Ivanov, and S. Gevorgian, Inst.
of Phys. Conf. Ser. 158, 339 (1997).
5. B. Kozyrev, M. M. Gaidukov, A. G. Gagarin, A. V. Tumarkin, and S. V. Razumov,
Tecn. Phys. Letters 28, 51 (2002).
6. S. W. Kirchoefer, J. M. Pond, A.C. Carter, W. Chang, K. K. Agarwal, J. S. Horwitz, and D. B. Chrisley, Microwave and Optical Technology Letters 18, 168 (1998).
7. S. Gevorgian and E. Kollberg, IEEE Trans. Micr. Theory Techn. 49, 2117 (2001).
8. B. Acikel, Y. Liu, A. C. Nagra, Y. Liu, P. Periaswamy, T. R. Taylor, J. S. Speck, and R. A. York, IEEE Microwave and Guided wave Letters 10, 10 (2000).
9. A. Vorobiev, P. Rundqvist, K. Khamchane, and S. Gevorgian, Appl. Phys. Letters 83, 3144 (2003).
10. B. H. Park, Y. Gim, Y. Fan, and Q. X. Jia, “High Nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitaxially grown on MgO substrates”, Appl. Phys. Lett. Vol. 77, No. 16, (2000).
11. Tito Ayguavives, Ali Tombak, Jon-Paul Maria, Gregory T. Stauf, Craig Ragaglia, Jeff Roeder, Amir Mortazawi, and Angus I. Kingon, “Physical properties of (Ba,Sr)TiO3 thin films used for integrated capacitors in microwave applications”, IEEE, (2001).
12. Ali Tombak, Student Member, IEEE, Jon-Paul Maria, Francisco Ayguavives, Zhang Jin, Student Member, IEEE, Gregory T. Stauf, Angus I. Kingon, Member, IEEE, and Amir Mortazawi, Member, IEEE “Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications”, IEEE Microwave and Wireless Components Letters, Vol. 12, No. 1, (2002).
13. C. M. Carlson, T. V. Rivkin, P. A. Parilla, J. D. Perkins, D. S. Ginley, A. B. Kozyrev, V. N. Oshadchy, and A. S. Pavlov, “Large Dielectric constant (ε/ε0>6000) Ba0.4Sr0.6TiO3 Thin Films for High-Performance microwave Phase Shifters”, Appl. Phys. Lett. Vol. 76, No. 14, (2000).
14. S. Hyun, J. H. Lee, S. S. Kim, K. Char, S. J. Park, J. Sok, and E. H. Lee, “Anisotropic Tuning Behavior in Epitaxial Ba0.5Sr0.5TiO3 Thin Films”, Appl. Phys. Lett. Vol. 77, No. 19, (2000).
15. Zhi Yu, Chen Ang, Ruyan Guo, and A. S. Bhalla, “Dielectric Properties and High Tunability of Ba(Ti0.7Zr0.3)O3 Ceramics under DC Electric Field”, Appl. Phys. Lett. Vol. 81, No. 7, (2002).
16. I. Palecchi, G. Grassano, D. Marre, L. Pellegrino, M. Putti, and A. S. Siri, Appl. Phys. Lett. 78, 2244 (2001)
17. B. Rong, J. N. Burghartz, L. K. Nanver, B. Rejaei, and M. van Zwan, IEEE Electron Device Letters 25, 176 (2004).
18. S. Gevorgian, Int. Journal of RF and Microwave Computer Aided Design 8, 433 (1998).
19. A. Deleniv, S. Abadei, and S. Gevorgian, Proc. EuMC 483 (2003).
20. J. Bellotti, E. K. Akdogan, A. Safari, “Structure and Dielectric Characterization of SrTiO3 and BST Thin Films for Microwave Applications”, IEEE, (2001).
21. David Pozar, “Microwave Enginrering”, published by John Wiley & Sons, INC.
22. S. Gevorgian, S. Abadei, H. Berg, and H. Jacobsson, Dig. IEEE IMS’2001.
23. N. A. Suvorova, C. M. Lopez, and E. A. Irene, ”Comparison of Interfaces For (Ba,Sr)TiO3 Films Deposited on Si and SiO2/Si Substrates”, Journal of Appl. Phys. Vol. 95, No. 5, (2004).
24. H. S. Gamble, Member, IEEE, B. M. Armstrong, Member, IEEE, S. J. N. Mitchell, Member, IEEE, “Low-loss CPW Lines on Surface Stabilized High-Resistivity Silicon”, IEEE Microwave And Guided Wave Letters, Vol. 9, No. 10, October (1999).
25. G. E. Ponchak, A. N. Downey, and L. P. B. Katehi, “High Frequency Interconnects on Silicon Substrates,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., vol. VII-1, pp. 101–104, (1997)
26. Y. Wu, B. M. Armstrong, H. S. Gamble, Z. Hu, Q. Chen, S. Yang, V. F. Fusco, and J. A. C. Stewart, “Microwave PtSi-Si Schottkybarrier-detector Diode Fabrication Using an Implanted Active Layer on High-resistivity Silicon Substrate,” IEEE Trans. Microwave Theory Tech., pt. 2, vol. 46, pp. 641–646, May (1998).
27. A. C. Reyes, S. M. El-Ghazaby, S. Dorn, M. Dydyk, D. K. Schroder, and H. Patterson, “Coplanar Wave Guides and Microwave Inductors on Silicon Substrates,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2016–2022, Sept. (1995).
28. Y. Wu, S. Yang, H. S. Gamble, B. M. Armstrong, V. F. Fusco, and J. A. C. Stewart, “The Effect of A SiO2 Interface Layer on CPW Lines and Schottky Barrier Diodes on HRS Substrates,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems, MI, pp. 178–180, Sept. (1998).
29. P. T. Baine, L. J. Quinn, B. Lee, S. J. N. Mitchell, B. M. Armstrong, and H. S. Gamble, “Enhancement of TFT Performance by Low Temperature Oxygen Annealing,” in Proc. ESSDERC’97, Stuttgart, Germany, pp. 688–691, (1997).
30. S. Uppal, D. Gay, G. A. Armstrong, D. W. McNeill, P. Baine, B. M. Armstrong, H. S. Gamble, and K. Yallup, “Characterization of SOI Thin Film Transistors Fabricated Using SiGe Etch Stop Layers,” presented at The Electrochemical Society Meeting, Seattle, WA, May (1999).
31. A. J. Moulson, J. M. Herbert, “Electroceramics-Materials• properties•� application”, published by CHAPMAN & HALL (1990).
32. 李雅明, “固態電子學”, 全華科技, (1995).
33. 施修正,“利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜之研究”, 清華大學, 博士論文, (1999).
34. 陳銘森, “镍酸鑭電極對鋯鈦酸鉛溶凝膠薄膜製作與特性影響之研究”, 清華大學, 博士論文, (1997)
35. 吳啟明, “利用濺鍍法以镍酸鑭為電極製作動態記憶體之鈦酸鍶薄膜的研究”, 清華大學, 博士論文, (1997)
36. B. Jaffe, W. R. Cook, Jr and H. Jaffe, “Piezoelectric Ceramics”, published by Academic Press Limited, (1971) 94.
37. Y. Xu, “Ferroelectric Materials and Their Applications”, published by North-Holland Netherlands, (1991).
38. 林居南, “添加劑對鈦酸鋇陶瓷電性及相變化之影響”, 清華大學, 博士論文, (1990).
39. 吳朗, “電子陶瓷-介電”, 全欣資訊圖書, (1994).
40.“Handbook of Thin Film Materials”, editd by Hari Singh Nalwa (2002).
41. 陳美玲, ”DRAM應用之鋯鈦酸鋇介電薄膜射頻磁控濺鍍之研究”, 清華大學, 碩士論文, (1996).
42. T. B. Wu, C. M. Wu, and M. L. Chen, “Highly Insulation Barium Zirconate-Titanate Thin Films Prepared by RF Magnetron Sputtering for Dynamic Random Access Memory Applications”, Appl. Phys. Lett., 69(18), (1996) 2659.
43. 蘇國輝, 李中夏, “以噴霧裂解法沉積鋯鈦鋇(BZT)薄膜, 中國材料科學學會1996年度年會論文集, 2, (1996) 159.
44. 方滄澤, 李瑞池, “以溶膠-凝膠法製備純鈦酸鋇和鋯添加鈦酸鋇毫微晶薄膜”, 中國材料科學學會1996年度年會論文集, 2, (1996) 163.
45. 陳美玲, 吳啟明, 吳泰伯, “鋯鈦酸鋇介電薄膜之射頻磁控濺鍍與特性”, 中國材料科學學會1996年度年會論文集, 2, (1996) 167.
46. S. Hoffmann and R. M. Waser, “Dielectric Properties, Leakage Behavior, and Resistance Degradation of Thin Films of the Solid Solution Series Ba(Ti1-xZrx)O3 “, Integrated Ferroelectrics 17(1-4), (1997) 141.
47. T. B. Wu, C. M. Wu, and M. L. Chen, “Dielectric and Leakage Current Characteristics of Ba(Ti1-xZrx)O3 Thin Film Deposited by RF Magnetron Sputtering”, Thin Solid Film 334(1-2), (1996) 77.
48. G. A. Smolenskii and V. A. Isupov, ”The Ferroelectric of Solid Solution of Barium Stannate in Barium Titanate”, Dokl. Akad. Nauk SSSR, 8, (1954) 1375.
49. A. J. Moulson and J. M. Herbert, ”Electroceramics” Materials, Properties, Applications, (1990), p52.
50. S. Abadei, S. Gevorgian, C.-R. Cho and A. Grishin, “Low-frequency and microwave performances of laser-ablated epitaxial Na0.5K0.5NbO3 films on high-resistivity SiO2/Si substrates,” JOURNAL OF APPLIED PHYSICS Vol. 91, No. 4, 15 FEBRUARY (2002)
51. S. M. Sze, Semiconductor Devices Physics and Technology (Wiley, New York, 1985).
52. Spartak S. Gevorgian, Member, IEEE, Torsten Martinsson, Peter L. J. Linnkr, Senior Member, IEEE, “CAD Models for Multilayered Substrate Interdigital Capacitors,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 6, JUNE 1996.
53. R. K. Hoffman, Hundbook of Microwave Integrated Circuits. Norwell, MA: Artech, 1987.
54. S S Gevorgian, P Lmntr, and E Kollherg, “CAD Models for Shielded Multilayered CPW,” IEEE Microwave Theory Tech, vol 43, pp.
55. C. Veyers, and F. Hanna, “Extention of The Application of Conforma Mapping Techniques to Coplanar Lines With Finite Dimensions,” Int. J. Electronics, vol. 48, no. 1, pp. 47-56, pp. 1980.
56. G. Ghione and C. Naldi, “Coplanar Waveguides for MMIC Applications: Effects of Upper Shielding, Conductor Hacking, Finite Extent Ground Planes, And Line-to-line Coupling,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, no. 3, pp. 260-267, 1987.
57. S. Gevorgian, A. Vorobiev, D. Kuylenstierna, A. Deleniv, S. Abadei, A. Eriksson, and P. Rundqvist, ” Silicon Substrate Integrated Ferroelectric Microwave Components,” Integrated Ferroelectrics, 66: 125–138, 2004
58. 劉恆睿, ”利用磁控濺鍍法在鎳酸鑭電極上沉積鋯鈦酸鋇薄膜作為微波變容器之研究,” 清華大學, 碩士論文,(2003)
59. P. W. J.M. Boumans, Inductively Coupled Plasma Emission Spectroscopy,1987 John Wiley & Sons, Inc.
60. G.W. Ewing, Analytical Instrumentation Handbook, 1990, Marcel Dekker, Inc.
61. 汪建民, “材料分析, Material Analysis”, 中國材料科學學會, P433-P467
62. 汪建民, “材料分析, Material Analysis”, 中國材料科學學會, P121-P147.
63. Franco De Flaviis, N. G. Alexopoulos, Fellow, IEEE, and Oscar M. Stafsudd, “Planar Microwave Integrated Phase-Shifter Design with High Purity Ferroelectric Material”, IEEE Trans. on Microwave Theory and Techniques, Vol. 45, No. 6, (1997) 963.
64. David M. Pozar, ”Microwave Engineering,” 2nd edition, ch1, P16.
65. Dieter K. Schroder, “Semiconductor Material and Device Characterization,” 2nd edition, ch6, P337-P339.
66. Dieter K. Schroder, “Semiconductor Material and Device Characterization,” 2nd edition, ch6, P347.
67. David M. Pozar, ”Microwave Engineering,” 2nd edition, ch1, P11.
68. S. Gevorgian,” Surface Impedance of Silicon Substrates and Films,” 1998 John Wiley & Sons, Inc.
69. David M. Pozar, ”Microwave Engineering,” 2nd edition, ch10, P587.
70. Zhai Jiwei, Yao Shen Bo, Zhang Liangying, Haydn Chen, “Dielectric and Ferroelectric Properties of Ba(Zr0.35Ti0.65)O3 Thin Films Grown by a Sol-gel Process,” Journal of Electroceramics,11,157-161, (2003).
71. Zhi Yu, Chen Ang, Ruyan Guo, and A.S. Bhalla, “Dielectric Properties and High Tunability of Ba(Ti0.7Zr0.3)O3 Ceramics Under DC Electric Field,” Applied Physics Letters, vol 81, No.7, (2002)
72. Won Seok Choi, Bum Sik Jang, Dong-Gun Lim, Junsin Yi, Byungyou Hong, ”Characterization of Ba(Zr0.2Ti0.8)O3 Thin Films Deposited by RF-magnetron Sputtering,” Journal of Crystal Growth, 237-239, (2002), 438-442.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top