(3.235.41.241) 您好!臺灣時間:2021/04/15 05:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林奐汝
論文名稱:底電極對鋯鈦酸鋇薄膜應用於微波變容器之影響研究
論文名稱(外文):The Effect of Bottom Electrode on Ferroelectric Thin Films Ba(Zr,Ti)O3 as Microwave Varactors
指導教授:吳泰伯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:80
中文關鍵詞:鋯鈦酸鋇調變性微波變容器鐵電材料
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
由於鐵電薄膜特有的高介電常數,電容值隨外加電場而變的調變力及低的介電損耗,故常被應用於微波調諧元件。本實驗是以鐵電薄膜做為微波調諧元件變容器,在鐵電膜材料的選擇上採用與被廣泛研究的鈦酸鍶鋇(BST)同系列之鋯鈦酸鋇(BZT),由於BZT比起BST有較低的介電損耗,以及不差的調變力,並可藉由添加鋯,將居里溫度降至室溫以下,得到順電相。
本實驗是以磁控濺鍍技術,沉積鋯鈦酸鋇(BZT)薄膜,鋯鈦比為25/75,以Pt/Ti/SiO2/Si作為基板,再製作不同種類及厚度的金屬底電極,觀察介電性質的變化。由於多篇論文曾提及以導電氧化物電極LNO作為底電極有助於同樣為鈣鈦礦結構的鐵電材料在低溫結晶,並具有優選指向,故採用LNO薄膜來幫助BZT結晶成長,再改變金屬底電極的厚度及種類,觀察隨頻率增加,介電常數、介電損失、調變性的改變。
較厚或是導電性較好的金屬底電極,可以減少量測時所造成得誤差,所以介電損耗較低,而BZT薄膜鍍製在LNO上,可使BZT薄膜由多晶結構轉變為(001)優選指向的結構,但因為LNO熱膨脹係數較BZT大,因而產生應力變化,造成介電常數及調變性的降低。
第一章 緒論

第二章 文獻回顧
2.1鐵電材料簡介
2.1.1 極化機構
2.1.2 晶格特性及鐵電材料之特性
2.1.3 鈣鈦礦結構
2.1.3 擴散性相變化
2.2 鐵電薄膜之發展及製作方法
2.2.1 歷史發展
2.2.2 鈦酸鋇系鐵電材料
2.2.3 製作方法
2.2.4 鎳酸鑭導電電極
2.3 鐵電薄膜在微波方面的應用
2.3.1 鐵電薄膜之微波特性
2.3.2 鐵電薄膜在微波元件的應用
2.3.3 高頻的量測模型

第三章 實驗流程
3.1 鋯鈦酸鋇薄膜的製作
3.1.1Pt/Ti/SiO2/Si 的製備
3.1.2金屬底電極製備
3.1.3鎳酸鑭導電電極製備
3.1.4濺鍍鋯鈦酸鋇薄膜
3.1.4上電極的製備
3.2薄膜分析量測
3.2.1 薄膜結構分析
3.2.2 薄膜結晶性分析
3.2.3 成份分析
3.2.4 厚度量測及表面微觀結構
3.2.5 電性分析

第四章 結果與討論
4.1 薄膜成分分析
4.2 不同Pt底電極厚度對薄膜性質之影響
4.2.1 結構分析
4.2.2 電性分析
4.3 不同LNO導電電極厚度對薄膜性質之影響
4.3.1 結構分析
4.3.2 結晶性分析
4.3.3 電性分析
4.4 LNO導電電極、不同Pt底電極厚度對薄膜性質之影響
4.4.1 結構分析
4.4.2 電性分析
4.5 LNO導電電極、不同種類金屬底電極對薄膜性質之影響
4.5.1 結構分析
4.5.2 電性分析
第五章 結論
參考資料
1. 劉恆睿, “利用磁控濺鍍法在鎳酸鑭電極上沉基鋯鈦酸鋇薄膜作為微波變容器之研究”, 清華大學, 碩士論文 (2003)
2. M. J. Lancaster, J. Powell, and A. Porch, Semicond. Sci. Technol., Vol.11, 1323 (1998)
3. H.j. Shy, T.B. Wu, “Structure and electrical characteristics of BaZrTiO3 thin films deposited on LaNiO3 electrode by RF magnetron sputtering”, Jpn. J. Appl. Phys. Vol.37, 5638-5644, (1998)
4. 靳怡君, “磁控濺鍍之DRAM介電薄膜鋯鈦酸鋇之研究”, 清華大學, 碩士論文 (1998)
5. A. J. Moulson and J. M. Herbert, “Electroceramics-Materials Properties Application” published by CHAPMAN & HALL 52, (1990)
6. 施修正, “利用磁控濺鍍以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜之研究”, 清華大學, 博士論文 (1999)
7. 李雅明, “固態電子學”, 全華科技, (1995)
8. 賴昇志, “以LaNiO3 為下電極,開發PZT鐵電記憶體低溫製成之研究”, 清華大學, 碩士論文, (1999)
9. 吳啟明, “利用磁控濺鍍以鎳酸鑭為電極製作動態記憶體之鈦酸鍶薄膜之研究”, 清華大學, 博士論文, (1997)
10. B. Jaffe, W. R. Cook, Jr and H. Jaffe, “Piezoelectric Ceramics”, published by Academic Press Limited, 94 (1997)
11. 林居南, “添加劑對鈦酸鋇陶瓷電性及相變化的影響”, 清華大學, 博士論文, (1990).
12. D. Hennings, and A. Schnell, “Diffuse Ferroelectric Phase Transitions in Ba(Zr,Ti)O3 Ceramics”, J. American Ceramic Society, Vol 65, No. 11, p539, (1982).
13. C. Feldman, “Formation of thin films of BaTiO3 by Evaporation”, View of Science Instrument, Vol.26, 463, (1954)
14. I. H. Pratt and S. Firestone, “Fabrication of rf-sputtered Barium Titanate”, J. Vac. Sci. Tech., 8, 256(1971).
15. 汪建民, 彭成鑑, 陳三元, “強介電陶瓷薄膜專題序論”, 工業材料, 107, 1995
16. 彭成鑑, “強介電陶瓷材料動態隨機記憶體(DRAM)上的應用”, 工業材料, 107, 1995
17. P. C. V. Buskirk, R.Gardiner, P. S. Kirlin, S. Nutt, “Reduced-Pressure MOCVD of Highly Crystalline BaTiO3 Thin Films”, J. Mater. Res., 7(3), (1992) 542.


18. L. A. Wills, B. W. Wessels, D. S. Richeson, and T. J. Marks, “Epitaxial Growth of BaTiO3 Thin Films By Organometallic Chemical Vapor Deposition”, Appl. Phys. Lett., 60(1), (1992) 41.
19. A. Nazeri, m. Kahn, T. Kidd, “Strontium-Barium-Titanate Thin Films by Sol-Gel Processing”, J. Mater. Sci. Lett., 14, (1993) 1085.
20. S. Jerry Fiedziuszko, Fellow, IEEE, Ian C. Hunter, Senior Member, IEEE, Tatsuo Itoh, Fellow, IEEE, Ypshio Kobayashi, Fellow, IEEE, Toshio Nishikawa, Fellow, IEEE, Steven N. Stitzer, Senior Member, IEEE, and Kikuo Wakino, Life Fellow, IEEE, “Dielectric Materials, Devices, and Circuits”, IEEE Trans. On Microwave Theory and Techniques, Vol. 50, No. 3, March 2002.
21. “Handbook of Thin Film Materials”, editd by Hari Singh Nalwa (2002).
22. C.C. Yang, M.S. Chen, T.J. Hong, C.M. Wu, J.M. Wu, T.B. Wu, “Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrate by RF magnetron sputtering for the growth of textured PZT”, Appl. Phys. Lett., Vol.66, 2643 (1995)
23. C.M. Wu, T.J. Hong, T.B. Wu, “Effects of (100)-textured LaNiO3 electrode on the deposition and characteristics of PbTiO3 thin films prepared by RF magnetron sputtering” J. Mater. Res., Vol.12, 2158, (1996)
24. Gregory T. Stauf, Craig Ragaglia, Jeffrey F. Roeder, Dan Vestyck, Jon-Paul Maria, Tito Ayguavives, Angus Kingon, Amir Mortazawi, Ali Tombak “Thick Electrodes for high frequency high Q tunable ferroelectric thin film varactors”, Integrated Ferroelectric, Vol.39, 321-330, (2001)
25. David M. Pozar, ”Microwave Engineering”, published by John Wiley & Sons
26. Franco De Flaviis, N. G. Alexopoulos, Fellow, IEEE, and Oscar M. Stafsudd, “Planar Microwave Integrated Phase-Shifter Design with High Purity Ferroelectric Material”, IEEE Trans. on Microwave Theory and Techniques, Vol. 45, No. 6, (1997) 963.
27. Kai Chang, “RF and Microwave Wireless Systems”, published by John Wiley & Sons, INC.
28. J. M. Pond, S.W. Kirchoefer,W. Chang, J. S. Horwitz, and D. B. Chrisey, “Microwave properties of ferroelectric thin films,” Integrated Ferroelect., vol. 22, pp. 837–848, (1998)
29. Zhengxiang Ma, Andrew J. Becker, P. Polakos, Harold Huggins, John Pastalan, Hui Wu, K. Watts, Y. H. Wong, and P. Mankiewich, “RF Measurement Technique for Characterizing Thin Dielectric Films”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.45, NO.8, (1998) 1811.

30. Franco De Flaviis, N. G. Alexopoulos, Fellow, IEEE, and Oscar M. Stafsudd, “Planar Microwave Integrated Phase-Shifter Design with High Purity Ferroelectric Material”, IEEE Trans. on Microwave Theory and Techniques, Vol. 45, No. 6, (1997) 963.
31. Tae-Gon Kim, Jeongmin Oh, Yongjo Kim, Tache Moon, Kug Sun Hong and Byungwoo Park, “Crystalline Dependence of Microwave Dielectric Properties in (Ba,Sr)TiO3 Thin Film”, Jpn. J. Appl. Phys. Vol.42, 1315-1319, (2003)
32. K. Sreedhar, J.M. Honig, M. Darwin, M. Mcelfresh, P.M. Shand, J. Xu, B.C. Crooker, and J. Spalek, “Electronic Properties of the Metallic Perovskite LaNiO3:Correlated Behavior of 3d Electrons”, Phys. Rev. B, Vol.(46), 6382, (1992)
33. R.D. Sanchez, M.T. Causa, J. Sereni, M. Vallet Regi, M.J. Sayagues, and J.M. Gonzalez-Calbet, “Specific Heat, Magnetic Susceptibility and Electrical Measurements on LaNiO3”, J. of Alloys and Compounds, Vol.191, 287, (1993
34. Ali Tombak, Student Member, IEEE, Jon-Paul Maria, Francisco Ayguavives, Zhang Jin, Student Member, IEEE, Gregory T. Stauf, Angus I. Kingon, Member, IEEE, and Amir Mortazawi, Member, IEEE “Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications”, IEEE Microwave and Wireless Components Letters, Vol. 12, No. 1, (2002).
35. Seung Eon Moon, Eun-Kyoung Kim, Min-Hwan Kwak, Han-Cheol Ryn, Young-Tae Kim, Kwang-Yong Kang and Su-Jae Lee, “Orientation dependent microwave dielectric properties of ferroelectric Ba1-xSrxTiO3 thin films”, Appl. Phys. Lett. Vol.83, 2166, (2003)
36. Francisco Ayguavives, Zhang Jin, Ali Tombak, Jon Paul Maria, Amir Mortazawi, Angus I. Kingon “Contribution of dielectric and metallic losses in RF/ microwave tunable varactors using (Ba,Sr)TiO3 thin films”, Integrated Ferroelectric, Vol.39, 393-402, (2001)
37. Tzu-Feng Tseng, Rong-Pyng Yang, Kuo-Shung Liu and I-Nan Lin, “Ferroelectric properties of (Pb0.97La0.03)(Zr0.66Ti0.34)0.9875O3 films deposited on Si3N4-coated Si substrates by pulsed laser deposition process”, Appl. Phys. Lett. Vol.70, 46, (1997)
38. W. Paszkowicz , M. Knappb,, C. Baehtz , R. Minikayev , P. Piszora , J.Z. Jiang d,, R. Bacewicz, “Synchrotron X-ray wavelength calibration using a diamond internal standard: application to low-temperature thermal-expansion studies”, Journal of Alloys and Compounds, Vol.382, 107-111, (2004)


39. Wontae Chang, Steven W. Kirchoefer, Jeffrey M. Pond, Jeffery A. Bellotti, Syed B. Qadri “Room-temperature tunable microwave properties of strained SrTiO3 films”, Journal of Applied Physics, Vol.96, 6629-6633, (2004)
40. W. Chang, S.W. Kirchoefer, J.M. Pond, J.S. Horwitz, and L. Sengupta, “Strain-relieved BaSrTiO3 thin films for tunable microwave applications”, J. Appl. Phys., Vol.92, 1528, (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔