跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:a8de:191f:a29b:1858) 您好!臺灣時間:2025/01/13 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳貴清
研究生(外文):Kuei-Ching Wu
論文名稱:利用原子軌道線性疊加方法計算單壁奈米碳管能帶結構
論文名稱(外文):Electronic band structure of isolated single-walled carbon nanotubes within LCAO
指導教授:吳玉書
指導教授(外文):George Yu-Shu Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:40
中文關鍵詞:奈米碳管能隙能帶結構緊束法
外文關鍵詞:carbon nanotubeEnergy gapband structureLCAOTight-binding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
利用原子軌道線性疊加方法,選擇一個單位細胞有兩個原子,每各原子有四各軌道,所以我們有 漢米爾頓矩陣。在小半徑奈米碳管裡,我們考慮曲率造成的混成效應及考慮到第三鄰近原子的交互作用力來計算奈米碳管的能帶結構。我們發現曲率效應的確影響電子特性以及第三鄰近原子的交互作用力降低了能隙大小。我們的數值計算結果顯示 (4,0) 和 (6,0) 奈米碳管在費米能階上沒有能隙 ,所以呈現金屬性質,而且此結果和第一原理的計算結果相符合。在這篇論文裡,我們將呈現考慮到第三鄰近原子的交互作用力的重要性。
Based on LCAO calculations, there are four atomic orbitals ( ) per atom. We thus have eight Bloch orbitals in the two atoms in a unit cell. We have constructed the Hamiltonian matrix., including 2s and 2p orbitals to take into account the mixing effect of σ and π orbitals due to the curvature of tubes with small radii, and we calculate the band structure of carbon nanotubes including up to third-nearest neighbors interactions numerically. We find tube curvature may significantly affect the electronic properties and the third-neighbor interactions reduce the energy gap. Our results show that the (4,0) and (6,0) tubes have no energy gap at the Fermi level and are in good agreement with first-principles calculations, and with decreasing radius, the effect of third-neighbor interactions on the gap becomes more important. We show the importance of calculations including up to third-nearest neighbors interactions.
Abstract
Chapter 1: Introduction ……………………………………………………….....p1

Chapter 2: LCAO approach to the band structure…………………………......p3
2.1 Two-Dimensional Graphite……………………………………………………..p5
2.2 π- bands of two-dimensional graphite…………………………………………..p6
2.3 σ- bands of two-dimensional graphite…………………………………………..p8

Chapter3: Structureof a single-wall carbon nanotube…………………………..p10

Chapter 4: Electronic Band Structure of isolated single-walled carbon nanotubes
4.1 Zone-Folding Approximation without effect of curvature……………………...p12
(4.1.1) Energy dispersion of Armchair Nanotubes (n,n)
(4.1.2) Energy dispersion of Zigzag Nanotubes (n,0)

4.2 Effects of nanotube curvature…………………………………………………...p14
(4.2.1) Calculation of band structure taking into account of the nearest-neighbor interactions
(4.2.2) Calculation of band structure taking into account of the first and second nearest neighbor interactions.
(4.2.3) Calculation of band structure including up to third-nearest neighbor interactions

Chapter 5: Conclusions……………………………………………………………p21

References………………………………………………………………………….p22
List of Tables……………………………………………………………………….p23
List of Figures……………………………………………………………………...p25
1. S. Iijima, Nature(London) 354, 56(1991)
2. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon
Nanotubes(Imperial College Press, London, 1998)
3. S. Reich, J. Maultzsch, and C. Thomsen, Phys. Rev. B 66, 035412(2002)
4. J. Chen, Z. Yang, and J. Gu, Modern physics Letters B, Vol.18, No. 15(2004)
5. O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B 65, 153405(2002)
6. A. Kleiner, and S. Eggert, Phys. Rev. B 63, 073408(2001)
7. V. Zolyomi, and J. Kurti, Phys. Rev. B 70, 085403(2004)
8. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 47, 16671(1993)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top