(3.238.174.50) 您好!臺灣時間:2021/04/16 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳怡君
論文名稱:利用離體模式進行Microdialysis-microboreHPLC-UV/nano-TiO2photooxidation-pre-reduction-HG-ICPMS連續測定系統在現場、動態監測尿液中砷物種濃度變化之研究
論文名稱(外文):In vitro evaluation of Microdialysis-microbore HPLC- UV/nano-TiO2 photooxidation-pre-reduction-HG-ICPMS system for in-situ and continuous determination of dynamic variation of arsenic species in urine sample
指導教授:孫毓璋楊末雄楊末雄引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:108
中文關鍵詞:砷物種奈米光觸媒離體
外文關鍵詞:nano TiO2UV photooxidationarsenicpreduction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:276
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
摘要
傳統上在評估生物體的砷曝露量或相關健康效應時,常常利用總量分析的技術來進行評估,然而砷存在于正常人體內,其化學形式可分為無機砷 (三價砷及五價砷)和有機砷(一甲基砷及二甲基砷等),它們在體內的相互轉換和代謝則才真正地決定了砷的毒性作用。由於各個砷物種之毒性大小不同,因此要準確地掌握生物體內砷的健康效應就必須進一步了解各砷物種的分布情形。此外,生物醫學界為窺探砷物種在活體動物體內的的轉換代謝機轉,對於可現場(in-situ)進行活體動物體內(in-vivo)連續(continuous)監測砷物種動態(dynamic)變化的分析技術的需求亦十分殷切。
為開發適合連續監測活體動物體內砷物種動態變化的分析系統,本研究依層析、微透析及ICP-MS儀器測定等三大部分分別進行最佳化操作條件的探討。由於本研究係利用氫化系統來連接層析與ICP-MS二系統,為改進因不同砷物種氫化效率不同所導致靈敏度差異的問題,本研究中乃嘗試建立一套UV/nano-TiO2 photooxidation及pre-reduction系統,期望於氫化步驟前,先將所有的砷物種轉化為氫化效率最好的AsIII,並藉此提升分析系統的靈敏度。實驗結果顯示,對本研究欲測定四個砷物種AsIII、DMA、MMA及AsV而言,最低可達到的偵測極限分別為0.37, 0.18, 0.17, 0.22 ng/mL,測定時間的結析度亦可縮短至15分鐘,在長時間的監測過程中,所得到之分析結果的穩定度(RSD%值)則均可維持在10 %以內。
最後,在確認利用所建立之連線分析系統進行活體動物體內砷物種連續監測可行性的過程中,本研究係利用離體模式在尿液樣品中添加砷標準品,再將微透析探針置於尿液樣品中進行現場連續透析取樣,接著再將收集到的透析液樣品注入microbore HPLC- UV/nano-TiO2 photooxidation-pre-reducation-HG-ICPMS系統中進行現場連續的動態監測。實驗結果顯示,當尿液樣品中添加各種砷物種時,即可利用本研究所開發之連線分析系統快速地且準確地測得各砷物種濃度的變化,由此可見本研究所建立之連線分析技術確實已具備了現場(in-situ),體內(in-vivo)及連續(continuous)監測活體動物體內砷物種動態變化的可行性。
Abstract
Chemical speciation of arsenic compounds in human urine is an interesting and important topic because the distribution of different arsenicals in human urine is considered highly related to certain disease and occupational exposure. It has long been realized that the determination of total arsenic concentration is insufficient for clinical and environmental considerations. Generally, the most common analytical methodology to approach As speciation is the hyphenation of a powerful separation technique with a sensitive and selective detector. The direct coupling of high-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) seems to be one of the most common approaches for this speciation in a variety of samples. Although ICP-MS is a very powerful technique for trace and isotopic analysis, molecular ion interferences caused by the presence of argon or chlorine which can still disturb the measurement of arsenic isotopes. There were several papers reported that the coupling of hydride generation techniques with ICP-MS is suitable to overcome some of the ICP-MS measurement problems. Greater sensitivity can be attainable because of the improved analyte delivery efficiency and removal of sample matrix. Up to now, chemical hydridization methods are frequently employed to interface chromatographic separation and instrument detection. In view of the inferiority in converting monomethylarsenic acid (MMA), dimethylarsenic acid (DMA) and As(V) into gaseous hydride by chemical methods, a new on-line oxidation technique utilizing HPLC-UV/nano-TiO2 photocatalysis device coupled with hydride generation-ICP-MS for the speciation of arsenic species is developed. In this study, As(III), MMA, DMA and As(V) were separated using anion-exchange chromatography column. After the chromatographic separation, on-line oxidation of arsenic species into As(V) by UV/nano-TiO2 photocatalysis device were investigated. To optimize the oxidation efficiency, the effects of particle size and crystal types of titanium oxide were investigated. Additionally, owing to the hydridization efficiency of As(III) is the best by NaBH4, a pre-reductant(Na2S2O4)was also employed to convert the resultant As(V) to As(III) prior to chemical hydridization step. By way of the use of proposed procedure, the detection limits of As(III), MMA, DMA and As(V) are 0.37、0.18、0.17 and 0.22 ug/L, respectively. The stability of this method can be controlled down to approximately 10 % in 360 min continuous measurement. To evaluate the applicability of proposed method, in-situ and continuous monitoring of the dynamic variation of arsenic species in spiked human urine has been performed by in vitro mode. Base on the achieved analytical results, it indicated that the proposed microdialysis-microbore HPLC- UV/nano-TiO2 photooxidation-pre-reducation-
HG-ICPMS hyphenated system is a feasible approach for in vivo tracking the dynamic variation of different arsenic species in living animal.
目錄
第一章 前言…………………………………………………… 1
1.1 物種分析的重要性與其在生物醫學上的意義………. 1
1.2 分析技術的演進………………………………………. 3
1.3 光觸媒分解有機物的演進與發展……………………. 8
1.4 生物樣品中砷物種分析的重要性……………………. 14
1.5 研究目的及方法………………………………………. 18
第二章 儀器分析原理………………………………………… 20
2.1 微透析取樣法 (Microdialysis sampling)……………... 20
2.2 高效能液相層析法之分析原理 (HPLC)…………….. 23
2.2.1陰離子交離層析法 (Anion-exchange chromatography)…………………………………. 25
2.2.2逆相層析法 (Reverse phase chromatography)…… 26
2.3 光氧化反應系統原理 (Photo-oxidation system)……... 28
2.4 氫化物產生系統原理 (Hydride generation)………….. 34
2.5 感應耦合電漿質譜儀分析法 (ICP-MS)……………... 34
第三章 實驗部分……………………………………………… 49
3.1 LC-ICP-MS連線分析系統.............................................. 49
3.2 微透析取樣系統 (Microdialysis sampling)…………... 54
3.3 nano-TiO2 UV photooxidation 系統................................ 56
3.4前還原劑最佳化之探討................................................... 58
3.5 Microdialysis-LC-UV/nano-TiO2 photooxidation/pre- reduction- HG-ICPMS連線分析系統的建立.................... 59
第四章 結果與討論…………………………………………… 61
4.1 Microdialysis-Microbore HPLC-UV photooxidation/ nano TiO2- pre-reduction-HG-ICP-MS連線分析系統的建立………………………………………….. 61
4.1.1 ICP-MS儀器最佳化操作條件之探討…………… 62
4.1.2逆相層析管柱之最佳分離條件探討…………….. 65
4.1.2.1動相pH的探討……………………………. 65
4.1.2.2 動相組成的探討…………………………... 68
4.1.2.3 動相流速最佳化探討…………………….. 71
4.1.3微透析取樣系統最佳化參數探討………………... 76
4.1.3.1個別物種的透析效率……………………… 76
4.1.3.2透析速度對砷物種回收率的影響…… 78
4.1.4光反應系統最佳分解條件之探討………………... 81
4.1.4.1 TiO2晶型及粒徑大小的選擇……………… 83
4.1.4.2 TiO2懸浮液 pH的影響…………………… 85
4.1.4.3 TiO2濃度對砷物種氧化效率的影響……… 88
4.1.5前還原劑最佳化條件探討………………………... 91
4.2 連線分析系統效能之探討……………………………. 92
第五章 結論…………………………………………………….. 100
第六章 參考文獻……………………………………………….. 102
附錄一…………………………………………………………… 108
1 D. M. Templeton, Anal. Bioanal. Chem., 2003, 375(1062-1066)
2 D. L. Tsalev, M. Sperling, B. Welz, Analyst, 1998, 123(1703-1710)
3 鍾禹德, “發展超臨界流體萃取與原子吸收光譜連線測定技術進行固態樣品中甲基汞與無機汞離子的物種分析方法研究”, 國立清華大學碩士論文, 民國八十八年七月
4 A. S. Medel, Spectrochim. Acta Part B, 1998, 53(197-211)
5 S. Caroli, Element Speciation in Bioinorganic Chemistry, John Wiley & Sons, Inc., 1996.
6 O. F. X. Donard, J. A. Caruso, Spectrochim. Acta Part B, 1998, 53 (157-163)
7 P. Thomas, K. Sniatecki, Fresenius J. Anal. Chem., 1995, 351(410-414)
8 I. Martín, M. A. L. Gonzálvez, M. Gómez, C. Cámara, M. A. Palacios, J. Chromatogr. B, 1995, 666(101-109)
9 X. C. Le, M. Ma, J. Chromatogr. A, 1997, 764(55-64)
10 K. L. Ackley, C. B’Hymer, K. L. Sutton, J. A. Caruso, J. Anal. At. Spectrom., 1999, 14(845-850)
11 M. Vilano, A. Padro, R. Rubio, Anal. Chem. Acta, 2000, 411(71-79)
12 K. Falk, H. Emons, J. Anal. At. Spectrom., 2000, 15(643-649)
13 Y. Shiobara, Y. Ogra, K. T. Suzuki, Chem. Res. Toxicol., 2001, 14(1446-1452)
14 X. Wei, C. A. Brockhoff-Schwegel, J. T. Creed, Analyst, 2000, 125(1215-1220)
15 M. H. Florêncio, M. F. Duarte, S. Facchetti, M. L. Gomes, W. Goessler, K. J. Irgolic, H. A. V. Klooster, L. Montanarella, R. Ritsema, L. F. V. Boas, A. M. M. D. Bettencourt, Analusis, 1997, 25(226-229)
16 A. Geiszinger, W. Goessler, D. Kuehnelt, K. Francesconi, W. Kosmus, Environ. Sci. Technol., 1998, 32(2238-2243)
17 J. Lintschinger, P. Schramel, A. H. Rauscher, I. Wendler, B. Michalke, Fresenius J. Anal. Chem., 1998, 362(313-318)
18 R. Pongratz, Sci. Total Environ., 1998, 224(133-141)
19 J. Gailer, S. Madden, W. R. Cullen, M. B. Denton, Appl. Organometal. Chem., 1999, 13(837-843)
20 M. Vilanó, A. Padró, R. Rubio, Anal. Chim. Acta, 2000, 41(71-79)
21 X. C. Le, W. R. Cullen, K. J. Reimer, Appl. Organometal. Chem., 1992, 6(161-171)
22 M. A. Palacios, M. Gómez, C Cámara, M. A. López, Anal. Chim. Acta, 1997, 340(209-220)
23 M. Moldovan, M. M. Gómez, M. A. Palacios, C Cámara, Microchem. J., 1998, 59(89-99)
24 S. Ringmann, K. Bosh, W. Marquardt, M. Schuster, G. Schlemmer, P. Kainrath, Anal. Chim. Acta, 2002, 452(207-215)
25 M. C. V. Lojo, E. A. Rodríguez, P. L. Mahía, S. M. Lorenzo, D. P. Rodríguze, Talanta, 2002, 57(741-750)
26 X. Zhang, R. Cornelis, J. D. Kimpe, L. Mees, Anal. Chim. Acta, 1996, 319(177-185)
27 R. Rubio, A. Padró, J. Albertí, G. Rauret, Anal. Chim. Acta, 1993, 283(160-166)
28 R. Rubio, A. Padró, J. Albertí, G. Rauret, Trends in Anal. Chem., 1995, 14(274-278)
29 J. Albertí, R. Rubio, G. Rauret, Fresenius J. Anal. Chem., 1995, 351(415-419)
30 S. Maeda, A. Ohki, T. Kawabata, M. Kishita, Appl. Organometal. Chem., 1999, 13(121-125)
31 J. L. G. Ariza, D. S. Rodas, R. Beltrán, I. Giráldez, Intern. J. Environ. Anal. Chem., 1998, 74(203-213)
32 T. Dagnac, A. Padró, R. Rubio, G. Rauret, Talanta, 1999, 48(763-772)
33 R. Sur, J. Begerow, L. Dunemann, Fresenius J. Anal. Chem., 1999, 363(526-530)
34 D. L. Tsalev, M. Sperling, B. Welz, Spectrochim. Acta Part B, 2000, 55(339-353)
35 A. Fujishima, K. Honda, Nature, 1972, 238(37-38)
36 S. N. Frank, A. J. Bard, J. Phys. Chem., 1977, 81(1484-1486)
37 J. Chen, Advanced Oxidation Techniques, 1997.
38 高濂等, 奈米光觸媒, 五南圖書出版股份有限公司, 民國九十三年四月
39 H. Yang, W. Y. Lin, K. Rajeshwar, J. Photochem. Photobio. A : Chemistry, 1999, 123(137-143)
40 M. Bissen, M. M. V. Baron, A. J. Schindelin, F. H. Frimmel, Chemosphere, 2001, 44(751-757)
41 H. Lee, W. Choi, Environ. Sci. Technol., 2002, 36(3872-3878)
42 P. K. Dutta, A. K. Ray, V. K. Sharma, F. J. Millero, J. Colloid. And Interface Sci., 2004, 278(270-275)
43 B.K. Mandal, K.T. Suzuki, Talanta, 2002, 58(201-235)
44 X. C. Le, X. Lu, M. Ma, W. R. Cullen, H. V. Aposhian, B. Zheng, Anal. Chem., 2000, 72(5172-5177)
45 M. Vahter, Applied organometallic chemistry, 1994, 8(175-182)
46 K. T. Suzuki, B. K. Mandal, Y. Ogra, Talanta, 2002, 58(111-119)
47 A. H. Hall, Toxicology Letters, 2002, 128(69-72)
48 M. Vahter, Toxicology Letters, 2000, 112-113(209-217)
49 M. Styblo, L. D. Razo, L. Vega, D. R. Germolee, E. L. LeCluyse, G. A. Hamliton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Arch. Toxicol., 2000, 74(289-299)
50 X. Lin, D. Alber, R. Henkelmann, Anal. Bioanal. Chem., 2004, 379(218-220)
51 P. Kintz, J. P. Goulle, P. Fornes, B. Ludes, J. Anal. Toxicol., 2002, 26(584-585)
52 D. Douer, M. S. Tallman, J. Clini. Oncol., 2005, 23(2396-2410)
53 M. S. H. Lam, R. J. Ignoffo, Cancer Paratice, 2001, 9(155-157)
54 X.C. Le, X.F. Li, V. Lai, M. Ma, S. Yalcin, J. Feldmann, Spectrochim. Acta B, 1998, 53(899-909)
55 S. Wangkarn, S.A. Pergantis, J. Anal. At. Spectrom., 2000, 15(627-633)
56 B. Do, S. Robinet, D. Pradeau, F. Guyon, J. Chromatogr. A, 2001, 918(87-98)
57 X.C. Le, X. Lu, M. Ma, W. R. Cullen, H. V. Aposhian, B. Zheng, Anal. Chem., 2000, 72(5172-5177)
58 A. Shraim, S. Hirano, H. Yamauchi, Anal. Sci., 2001, 17(i1729-i1732)
59 X.C. Le, M. Ma, N.A. Wong, Anal. Chem., 1996, 68(4501-4506)
60 J. Golimowski, K. Golimowska, Anal. Chim. Acta, 1996, 325(111-133)
61 M. Abdullah, G.L.-C. Low, R.W. Matthews, J. Phys. Chem., 1990, 94(6820-6825)
62 K. E. Jarvis, A. L. Gray, R. S. Houk, I. Jarvis, J. W. Mclaren, J. G. Williams, “Handbook of inductively coupled plasma mass spectrometry”, Chapman and Hall, New York, 1992. 
63 H. E. Taylor, “Inductively coupled plasma mass spectrometry”, Academic Press, USA, 2001.
64 F. Vanhaecke, R. Dams, C. Vandecasteele, J. Anal. At. Spectrom., 1993, 8(433-438)
65 V. Hernandis, J. L. Todoli, A. Canals, J. V. Sala, Spectrochim. Acta Part B, 1995, 50(985-996)
66 Z. Gong, X. Lu, M. Ma, C. Watt, X. C. Le, Talanta, 2002, 58(77-96)
67李佩玲, “連續監測活體動物體內砷物種動態變化之微型化連線分析系統研究”, 國立清華大學碩士論文, 民國九十二年七月
68 Y. Zhao, X. Liang, C. E. Lunte, Anal. Chim. Acta, 1995, 316(403-410)
69 T. Buttler, C. Nilsson, L. Gorton, G. Marko-Varga, T. Layrell, J. Chromatogr. A, 1996, 725(41-56)
70 K. L. Synder, C. E. Nathan, A. Yee, J. A. Stenken, Analyst, 2001, 126(1261-1268)
71 J. L. Capelo-Martínez, P. Ximénez-Embún, Y. Madrid, C. Cámara, Trends in Anal. Chem., 2004, 23(331-340)
72 H. D. Jang, S. K. K, S. J. Kim, J. Nanoparticle Research, 2001, 3(141-147)
73 C. B. Almquist, P. Biswas, J. Catalysis, 2002, 212(145-156)
74 Z. Ding, G. Q. Lu, P. F. Greenfield, J. Phys. Chem. B, 2000, 104(4815-4820)
75 A. Fujishima, T. N. Rao, D. A. Tryk, Journal of Photochemistry and Photobiology C : Photochemistry Review, 2000, 1(1-21)
76 K. H. Wang, Y. H. Hsieh, L. J. Chen, Journal of Hazardous Materials, 1998, 59(251-260)
77 K. H. Wang, Y. H. Hsieh, C. H. Wu, C. Y. Chang, Chemosphere, 2000, 40(389-394)
78 R. Jungho, C. Wonyong, Environ. Sci. Technol, 2004, 38(2928-2933)
79 M. I. Litter, Applied Catalysis B : Environmental, 1999, 23(89-114)
80 W. C. Tseng, M. H. Yang, T. P. Chen, Y. L. Huang, Analyst, 2002, 127(560-564)
81 W. C. Tseng, G. W. Cheng, C. F. Lee, H. L. Wu, Y. L. Huang, Anal. Chim. Acta, 2005, 542
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔