(3.230.143.40) 您好!臺灣時間:2021/04/21 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡才智
論文名稱:溫度濕度效應對多壁奈米碳管/酚醛樹脂複合材料機械及電性質影響之研究
論文名稱(外文):Mechanical and Electrical Properties of MWNT/Phenolic Composites Under Moisture-Temperature Effects
指導教授:葉銘泉葉銘泉引用關係
指導教授(外文):Ming-Chuen Yip
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:90
中文關鍵詞:奈米碳管複合材料熱循環靜態疲勞性質
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:1
隨著時代潮流,研究奈米碳管發展是現今在學術界熱門討論話題,由於奈米碳管具有質量輕、導電性、高熱傳導度及熱穩定性等特殊物理特性以及許多潛在的應用如航空、航太、電磁波遮蔽(EMI)材料及靜電釋放材料(ESD)等上。本文即以研究奈米碳管添加入酚醛樹脂的複合材料(CNT/phenolic),探討不同比例的纖維對複合材料之抗拉強度及電性質,並觀察材料遭受到不同環境及熱循環溫度下處理後材料的抵抗能力,另外以碳纖維/環氧樹脂(Gr/epoxy)疊層板做為奈米碳管/酚醛樹脂的補強材,由靜態和疲勞實驗觀察補強效果。實驗結果顯示抗拉強度隨著碳管重量百分比增加而增加,在熱循環溫度地方由於基材和纖維間的膨脹係數不匹配導致強度隨週次數增加而降低,以碳纖維/環氧樹脂補強奈米碳管/酚醛樹脂在靜態強度提升5倍。最後經由SEM圖顯示,純酚醛破壞面屬於平滑脆斷,在碳管/酚醛時破壞面呈現龜裂凹凸不平,而放大圖中可看到碳管有壓印和脫出等破壞情況存在碳管和基材間。
目次
表目錄…………………………………………………………………III
圖目錄…………………………………………………………………IV
第一章 前言…………………………………………………………1
第二章 研究動機……………………………………………………4
第三章 文獻回顧……………………………………………………6
3-1 碳奈複合材料特性……………………………………6
3-1.1 碳奈米管起源……………………………………7
3-1.2 碳奈米管的特性…………………………………7
3-1.3 碳奈米管的備製…………………………………9
3-1.4 碳奈米管高分子複合材料………………………10
3-2 高分子機械性質………………………………………13
3-3 複合材料疲勞性質……………………………………14
3-4 疲勞破壞機制…………………………………………14
3-5 應力(S)與破壞週次(Nf)間的關係………………… 15
3-6 電磁波屏蔽理論………………………………………16
第四章 實驗內容及程序……………………………………………17
4-1 實驗材料與試劑………………………………………17
4-2 實驗儀器及設備………………………………………18
4-2.1 加工設備…………………………………………18
4-2.2 測試儀器…………………………………………19
4-3 實驗流程………………………………………………22
4-4 試片製作及檢測………………………………………22
4-5 實驗測試方法與程序…………………………………26
4-6 試片使用數量…………………………………………28
第五章 結果與討論…………………………………………………29
5-1 試片製作………………………………………………29
5-2 吸濕率測試……………………………………………29
5-3 靜態拉伸測試…………………………………………30
5-3.1 室溫試片…………………………………………33
5-3.2 85℃預處理之試片…………………………… 35
5-3.3 175℃預處理之試片……………………………36
5-3.4 25℃/ 85%RH預處理之試片……………………37
5-3.5 85℃/ 85%RH預處理之試片……………………37
5-3.6 實驗結果之整體分析……………………………38
5-4 熱循環靜態強度………………………………………39
5-5 電性質測試……………………………………………42
5-6 疲勞測試………………………………………………43
第六章 結論…………………………………………………………46
6-1 吸濕實驗………………………………………………46
6-2 靜態拉伸和熱循環實驗………………………………46
6-3 電性質實驗……………………………………………47
6-4 疲勞實驗………………………………………………48
參考文獻………………………………………………………………49
附表……………………………………………………………………56
附圖……………………………………………………………………60
參考文獻
1. http://www.asiateck.com.tw/index.htm亞特必股份有限公司。
2. H. S. Katz and J. V. Milewski., “Handbook of fillers for plastics,” New York:/Van Nostrand Reninhold Co., (1987).
3. W. Tang, M. H. Santare and S. G. Advani, “Melt processing and mechanical property characterization of multi-walled carbon nanotube/ high density polyethylene (MWNT/HDPE) composite films,” Carbon 41 (2003) 2779–2785.
4. A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology 62 (2002) 1993–1998.
5. M. Cadek, B. L. Foulgo, J. N. Coleman, V. Barron, J. Sandler, M.S. P. Shaffer, A. Fonseca, M. V. Es, K. Schulte and W. J. Blau, “Structural and Electronic Properties of Molecular Nanostructures,” AIP Conference Proceedings 633 (2002) 562-565.
6. D. S. Lim, J. W. An and H. J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear 252 (2002) 512–517.
7. N. P. Valentin, “Carbon nanotubes: properties and application,” Materials Science and Engineering R 43 (2004) 61–102.
8. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature (1985), 318,162.
9. http://nano.nchc.org.tw/dictionary/c60.html 奈米科學網
10. S. Iijima, “Helical microtubules of graphitic carbon,” Nature (1991), p.354-356.
11. T. W. Odom, J. L. Huang, P. Kim and C.M. Lieber, “Structure and Electronic Properties of Carbon Nanotubes,” J. Phys. Chem. (2000), 2794-2809.
12. A. Hirsch, “Chemistry of Single-wall Carbon Nanotubes,” Angew. Chem. Int. Ed. 41 (2002), S. 1853.
13. E. Dujardin, T. W. Ebbesen, A. Krishnan, P. N. Yianilos and M. M. J. Treacy, Phys. Rev. B (1998), 58, 14013.
14. M. M. J. Treacy , T. W. Ebbesen and T. M. Gibson, “Exceptionally High young’s modulus observed for individual carbon nanotubes,” Nature (1996), 381, 678–680.
15. E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 1997, 277(5334), 1971–5.
16. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert and K. A Smith, “Elastic strain of freely suspended single-wall carbon nanotube ropes,” Applied Physics Letters (1999), 74(25), 3803–3805.
17. S. Iijima and T. Ichlhashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature (1993), 363, 603–605.
18. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy and J. Vazquez, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls,” Nature (1993), 363, 605–607.
19. C. Journet , W. K. Maser, P. Bernier, A. Loiseau, M. L. Chapelle and S. Lefrant, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature (1997), 388, 756–758.
20. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev , C. B. Human and F. J. R. Macias, “Large-scale purication of single-wall carbon nanotubes: Process, product and characterization,” Applied Physics A (1998), 67(1), 29–37.
21. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Fohmund, D. T. Colbert and K. A. Smith, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters (1999), 313(1-2), 91–97.
22. Z. F. Ren, Z. P. Huang, J. W Xu., D. Z. Wang, J. G. Wen and J. H. Wang, “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Applied Physics Letters (1999), 75(8), 1086–1088.
23. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush and M. P. Siegal, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science (1998), 282, 1105–1107.
24. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez and J. M. Benoit, “Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerization and charge transfer through siteselective interaction,” Chem. Comm. (2001), 16, 1450–1451.
25. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park and D. A. Schiraldi, “Fibers from polypropylene/nano carbon fiber composites,” Polymer (2002), 43, 1701–1703.
26. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters (2000), 76(20), 2868–2870.
27. A. Peigney, E. Flahaut, C. H. Laurent, F. Chastel and A. Rousset, “Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion,” Chemical Physics Letters (2002), 352, 20–25.
28. H. D. Wagner, O. Lourie, Y. Feldman and R. Tenne, “Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix,” Applied Physics Letters (1998), 72(2), 188–190.
29. O. Lourie and H. D. Wagner, “Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites,” Composites Science and Technology (1999), 59(6), 975–977.
30. S.L. Ruan, P. Gao, X.G. Yang, T.X. Yu, “Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes,” Polymer (2003);44(19):5643–54.
31. J. M. Park, D. S. Kim, J. R. Lee and T. W. Kim, “Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique,” Materials Science and Engineering C 23 (2003) 971–975.
32. J. M. Park, J. W. Kim and D. J. Yoon, J. Colloid Interface Science 247 (2002) 231.
33. R. Andrews, M.C. Weisenberger, “Carbon nanotube polymer composites,” Current Opinion in Solid State and Materials Science 8 (2004) 31–37.
34. K-T. Lau, D. Hui, “The revolutionary creation of new advanced materials–carbon nanotube composites,” Composites Part B (2002);33:263–77.
35. Y. Ren, F. Li, H-M Cheng, K. Liao, “Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced-epoxy composite,” Carbon (2003);41:2159–79.
36. J. K. Gillham, Polymer Enq. Sci., 7, 225 (1967).
37. W. Wrasidlo, J. Polymer Sci., A2, 9, 1603 (1971).
38. H. O. Fuch and R. I. Stephens, “Metal Fatigue in Engineering,” John Willy and Sons, New York, (1980).
39. D. S. Saunders and G. Clark, “Fatigue Damage in Composite Laminates,” Materials Forum, Vol.17, (1993), pp.309-331.
40. R. D. Jamison, K. Schulte, K. L. Reifsnider and W. W. Stinchcomb, “Characterization and Analysis of Damage Mechanisms in Tension-Tension Fatigue of Graphite/Epoxy Laminates,” Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing and Materials, (1984), pp.21-55.
41. K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advance, Z. Hashin and C. T. Herakovich, eds., Pergamon Press, New York, (1983), pp.399-420.
42. W. Hwnag and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, (1986), pp.154-165.
43. R. J. W. Donald and M. Michel, “Electromagnetic Shielding,” A handbook series on electromagnetic interference and compatibility, Vol. 3, chapter 2, 6 and 7, (1988).
44. R. P. Clayton, “Introduction to Electromagnetic Compatibility,” Wiley series in Microwave and Optical Engineering, pp632-648,(1992).
45. K. C. David, “Field and Wave Electromagnetic,” Reading , Mass.Addison Wesley, pp198-219, (1989).
46. “Test Methods for dc resistance or conductance of insulating materials,” ASTM D257 (1999).
47. ASTM Standard, ASTM designation: D570-98, “Standard Test Method for Water Absorption of Plastics,” (1998).
48. “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM D3039-95a, (1998), pp.99-109.
49. “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composites,” ASTM D3479-96, (1998), pp133-138.
50. M. R. VanLandingham, R. F. Eduljee and J. W. Gillespie, “Moisture Diffusion in Epoxy System,” Center for Composite Materials and Materials Science Program.
51. L. Nicholais and A. T. DiBenedetto, J. Appl. Polymer Sci., 15, 1585 (1971).
52. A. N. Gent, J. Polymer Sci., A2, 10, 571 (1972).
53. Y. Fukui, T. Sato, M. Ushirokawa, T. Asada, and S. Onogi, J. Polymer Sci., A2, 8, 1195 (1970).
54. J. K. Gillham, Polymer Enq. Sci., 7, 225 (1967).
55. W. J. Wrasidlo, Polymer Sci., A2, 9, 1603 (1971).
56. A. S. Kenyon and L. E. Nielsen, J. Macromol. Sci., A3, 275 (1969).
57. R. E. Cuthrell, J. Appl. Polymer Sci., 11, 949 (1967).
58. F.H. Gojny, M.H.G. Wichmann, U. K�嫪pke, B. Fiedler, K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Composites Science and Technology 64 (2004) 2363–2371.
59. Y. Breton, G. Desarmot, J.P. Salvetat, S. Delpeux, C. Sinturel, F. Beguin, “Mechanical properties of multiwall carbon nanotubes/epoxy composites: in.uence of network morphology,” Carbon 42 (2004) 1027–1030.
60. N-H Tai, M-K Yeh, J-H Liu, “Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement,” Letters to the Editor / Carbon 42 (2004) 2735–2777.
61. W. D. Bascom and J. B. Romans, Ind. Eng. Chem. (Prod. Res. Devel.), 7, 172 (1968).
62. 胡德, 國立編譯館主編, “高分子物理與機械性質(下),” 渤海堂文化公司印行, 國立清華大學, (1990)。
63. J. Cook and J. E. Gordon, Proc. Royal Soc., A282, 508 (1964).
64. 村上新一, 洪純仁 譯, “酚醛樹脂,” 復文出版社, 台灣台北,
(1981)。
65. P. H. Geil, “Polymer Single Crystals,” Interscience, New York, 1963.
66. K-T Lau, S-Q Shi, H-M Cheng, “Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures,” Composites Science and Technology 63 (2003) 1161–1164.
67. A. S. Kenyon and L. E. Nielsen, J. Macromol. Sci., A3, 275 (1969).
68. Y. Diamant, S. Welner, and D. Katz, Polymer, 11, 498 (1970).
69. 劉家豪, “碩士論文 多壁奈米碳管/酚醛樹脂複合材料之機械性質研究,” 國立清華大學, (2003)。
70.R. B. Pipes, P. Hubert, “Helical carbon nanotube arrays: thermal expansion,” Composites Science and Technology 63 (2003) 1571–1579.
71. R.S. Ruo, D.C. Lorent, “Mechanical and thermal-properties of carbon nanotube,” Carbon 1995;33(7):925-30.
72. 勞工安全衛生簡訊第 70 期-複合材料之應用簡介 勞工安全組 沈育霖副研究員。
73. M. Olaf, K. Dirk, W. Hans, F. Christian, V. Marc, W.Holger, “Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene,” Polymer 45 (2004) 739–748.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔