跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林彥君
研究生(外文):Yan-Jyun Lin
論文名稱:以多壁奈米碳管及碳纖維補強酚醛樹脂之複合材料機械性質研究
論文名稱(外文):Mechanical Properties of Phenolic Matrix Reinforced by MWNT and Carbon Fiber
指導教授:葉孟考葉孟考引用關係戴念華戴念華引用關係
指導教授(外文):Meng-Kao YehNyan-Hwa Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:82
中文關鍵詞:多壁碳管複合材料
外文關鍵詞:carbon nanotubecomposites
相關次數:
  • 被引用被引用:1
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
一九九一年日本科學家飯島澄男發現奈米碳管後,由於其極佳的機械性質與物理性質,科學家們紛紛以碳管為補強材,補強高分子基材與陶瓷基材,顯示碳管可以提升基材各項機械性質。本文以短碳纖維混碳管補強熱固性高分子材料酚醛樹脂,探究補強材對複合材料機械性質之影響,並將纖維編製成球狀,置於CVD爐管中使其與碳管混合,可有效提昇複合材料之機械性質,碳管之界面剪應力與比表面積明顯優於碳纖維,且由FESEM觀測得知碳管與基材間結合良好,碳管補強效果較碳纖維佳;但當兩者混合時由於碳管聚集過大造成應力集中,導致碳管成為此混材結構中之雜質,降低整體材料之機械性質。文中並以Halpin-Tsai方程式嵌合實驗數據,具有不錯之效果;另外也以示差掃描熱量計(DSC)探討補強物對複合材料熱性質之影響,因碳管軸向熱傳導性佳導致整體複合材料因較易活化使玻璃轉換溫度下降,最後以場發射掃描式電子顯微鏡觀測材料之破壞面,觀察出碳管與基材間結合不錯,並發現多壁碳管獨特之刀銷效應(sword-in-sheath)。
Since the carbon nanotubes (CNTs) were discovered by Iijima, researchers used CNTs as reinforcement to enhance the mechanical properties of plastic or ceramic matrices. In this study, short carbon fibers and CNTs were combined to reinforce the phenolic resin and the mechanical properties of the hybrid composites were investigated experimentally. Besides, the ball-shaped continuous carbon fibers were placed in the middle of furnace and multi-walled carbon nanotubes (MWNTs) were produced by CVD process on the fibers to make the special reinforcement. The tensile test results showed that the hybrid composites had the lowest mechanical properties due to larger aggregate size of MWNTs, when compared with the composites reinforced by MWNTs or short fibers. The Halpin-Tsai equation was effectively used to fit the experimental mechanical properties. The differential scanning calorimetry (DSC) was used to investigate the glass transition temperature of composites. The composites with higher percentage of MWNTs have a lower glass transition temperature due to better longitudinal thermal property of MWNTs. Finally the FESEM was used to observe the fracture surface of composites. The results showed that the surface of MWNTs was covered of phenolic resin which resulted in good interaction between the MWNTs and the phenolic resin.
目 錄
頁次
中文摘要…………………………………………………………….i
英文摘要…………………………………………………………… ii
目錄………………………………………………………………….iii
圖表目錄…………………………………………………………….v
第一章 緒論………………..………………………………………..1
1.1 研究動機………………………………………………2
1.2文獻回顧…………………………………………………3
1.3 研究主題………………………………………………7
第二章 實驗步驟……………..……………………………………..9
2.1 實驗儀器……………………………………………9
2.2 纖維……………………………………………………12
2.3 化學氣相沉澱法生成多璧碳管……………………12
2.4 複合材料……………………………………………13
2.5 拉伸測試………………………………………………16
2.6示差掃描熱量計………………………………………16
第三章 數據分析方法…………………………………………..…..19
3.1 ASTM測試規範.……………………………………….19
3.2 數據分析………………………………………… 19
3.3 最小平方法….………………………………………20
3.4短纖承受負載析………………………………………21
3.5 Halpin-Tsai方程式…………………………………24
第四章 結果與討論…………………………………………………27
4.1 以CVD爐管備製多璧碳管混碳纖維…………………27
4.2 預混材之備製…………………………………………27
4.3 複合材料拉伸測試之結果…………………………30
4.4 DSC測試結果……………………………………. 32
4.5 破壞面之型態觀察……………………………. 33
第五章 結論…….….………………………………………………..36
參考文獻……………………………..……………………… 38
圖表………………………………..…………………………………43
















圖表目錄

表 4-1 熱壓壓力參數探討之抗拉強度結果表…………………... 43
表 4-2 熱壓壓力參數探討之楊氏模數結果表….…….…………. 43
表 4-3 熱壓壓力參數探討之破壞應變………………….……….. 43
表 4-4 後硬化參數探討之抗拉強度結果表………….………….. 44
表 4-5 後硬化參數探討之楊氏模數結果表……………………... 44
表 4-6 後硬化參數探討之破壞應變…………...………………… 44
表 4-7 抗拉強度結果表……….………………………………….. 45
表 4-8 楊氏模數結果表…………………………………………... 45
表 4-9 破壞應變結果表…………………………………………... 46
表 4-10 DSC之玻璃轉換溫度結果表……………………………... 46
圖2-1 CVD系統示意圖…………………………….……………. 47
圖2-2 粉碎機………….………………………………………….. 48
圖2-3 磁力攪拌機…………….………………………………….. 48
圖2-4 超音波振動機.…………………………………………….. 49
圖2-5 真空烘箱……………………...…………………………… 49
圖2-6 熱壓機……………..………………………………………. 50
圖2-7 迷你鑽石切割機…………………...……………..……….. 50
圖2-8 拉伸試驗機…………………………………………...…… 51
圖2-9 示差掃描熱量計…………………………….…………….. 51
圖2-10 掃描式電子顯微鏡………………………………….…….. 52
圖2-11 TOHO TENAX 股份有限公司製造之碳纖維…………… 52
圖2-12 化學氣相沉積法生成多壁奈米碳管……………………... 53
圖2-13 多壁奈米碳管的直徑統計圖……………………………... 53
圖2-14 粉碎後多璧碳管形貌圖…………………………………... 54
圖2-15 多璧碳管長度統計圖……………………….…………….. 54
圖2-16 補強材製作示意圖…………………………………….….. 55
圖2-17 上下模、脫模布及鋁框擺設示意圖……………………… 55
圖2-18 拉伸測試試片圖…………………………………………... 56
圖2-19 拉伸測試應力-應變曲線示意圖………………………….. 57
圖2-20 DSC分析原理示意圖……………………………….…….. 57
圖3-1 複合材料單元示意圖……………………………….…….. 58
圖3-2 纖維軸相拉伸應力與界面剪應力分布示意圖…………... 58
圖3-3 多壁碳管糾結形貌圖………….………………………….. 59
圖3-3 多壁碳管體積增加率統計圖……………………………... 59
圖4-1 長纖混多壁碳管之補強物………………………………... 60
圖4-2 2.0wt%長纖維/多壁碳管/酚醛樹脂複合材料試片破壞面 61
圖4-3 未固化酚醛樹脂之DSC分析……………………………. 62
圖4-4 熱壓壓力改變對複材機械性質之影響圖………………... 63
圖4-5 後硬化程序對複合材料機械性質影響圖………………... 64
圖4-6 無後硬化試片破壞面(2.0wt%碳管)…...………………… 65
圖4-7 三階段後硬化,熱壓壓力1300 psi試片(2.0wt%碳管)之破面.....…………………………………………………… 65
圖4-8 三階段後硬化,熱壓壓力650 psi試片(2.0wt%碳管)之破面..……………………………………………………... 66
圖4-9 後硬化12hr,200 oC,熱壓壓力1300psi(2.0wt%碳管)試
片破壞面…………………………………………………... 66
圖4-10 複合材料之抗拉強度結果………………………………... 67
圖4-11 複合材料之楊氏模數結果………………………………... 67
圖4-12 複合材料之破壞應變結果………………………………... 68
圖4-13 以修正型Halpin-Tsai方程式嵌合多璧碳管複材楊氏模
數…………………………………………………………. 68
圖4-14 以Halpin-Tsai方程式嵌合短碳纖維複材楊氏模數……... 69
圖4-15 以Halpin-Tsai方程式嵌合多壁碳管/短碳纖維複材楊氏
模數………………………………………………………... 69

圖4-16 純酚醛樹脂之DSC分析………..………………………… 70
圖4-17 純酚醛樹脂與0.5wt%多壁碳管之DSC分析比較圖……. 71
圖4-18 複合材料之玻璃轉換溫度………………………………... 71
圖4-19 純酚醛樹脂試片破壞面…………….…………………….. 72
圖4-20 0.5wt%、1.0wt%、1.5wt%及2.0wt%多壁碳管複材試片
破壞面FESEM圖…………………………………………. 73
圖4-21 1.0wt%、2.0wt%與4.0wt%多壁碳管複材高倍率形貌圖 75
圖4-22 0.5wt%、1.0wt%、1.5wt%、2.0wt%與4.0wt%多壁碳管/
短碳纖維/酚醛樹脂複合材料試片破壞面FESEM圖…… 77
圖4-23 4.0wt%多壁碳管/短碳纖維/酚醛樹脂複材高倍率形貌圖. 80
圖4-24 0.5wt%、1.0wt%碳纖維/酚醛樹脂複合材料試片破壞面
FESEM圖………………………………………………….. 81
圖4-25 4.0wt%碳纖維/酚醛樹脂複合材料試片之高倍率FESEM
圖…………………………………………………………... 82
參考文獻

1. 馬遠榮, “奈米科技,” 商周出版社, 台灣台北, 2002.
2. 成會明, “奈米碳管,” 五南圖書出版股份有限公司, 台灣台北, 2004.
3. P. Scharff, “New Carbon Materials for Research and Technology,” Carbon, Vol. 36, pp. 481-486, 1998.
4. E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
5. K. T. Lau, and D. Hui, “The Revolutionary Creation of New Advanced Materials – Carbon Nanotube Composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002.
6. S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Carbon Nanotubes Arrays,” Materials Science and Engineering A, Vol. 286, pp. 11-15, 2000.
7. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, Vol. 287, pp. 637-640, 2000.
8. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes,” Materials Science and Engineering A, Vol. 334, pp. 173-178, 2002.
9. Z. Yao, C.C. Zhu, M. Cheng, and J. Liu, “Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation,” Computational Materials Science, Vol. 22, pp. 180-184, 2001.
10. T. Kuzumaki, T. Hayashi, H. Ichinose, K. Miyazawa, K. Ito, and Y. Ishida, “In-Situ Observed Deformation of Carbon Nanotubes,” Philosophical Magazine, A, Vol. 77, pp. 1461-1469, 1998.
11. R. F. Gibson, “Principles of Composite Material Mechanics,” McGraw-Hill, New York, 1994.
12. K.T. Lau, S.Q. Shi, and H.-M. Cheng, “Micro-Mechanical Properties and Morphological Observation on Fracture Surfaces of Carbon Nanotube Composites Pre-Treated at Different Temperatures,” Composites Science and Technology, Vol. 63, pp. 1161–1164, 2003.
13. K. T. Lau, and D. Hui, “Effectiveness of Using Carbon Nanotubes as Nano-Reinforcements for Advanced Composite Structure,” Letters to the Editor / Carbon, Vol. 40, pp. 1065-1066, 2002.
14. J.B. Bai, and A. Allaoui, “Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation,” Composites: Part A, Vol. 34, pp. 689–694, 2003.
15. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Applied Physics Letters, Vol. 76, pp. 2868-2870, 2000.
16. Y. Ren, F. Li, H.-M. Cheng and K. Liao, “Tension–Tension Fatigue Behavior of Unidirectional Single-Walled Carbon Nanotube Reinforced Epoxy Composite,” Letters to the Editor / Carbon, Vol. 41, pp. 2159– 2179 2003.
17. J. Bai, “Evidence of the Reinforcement Role of Chemical Vapour Deposition Multi-Walled Carbon Nanotubes in a Polymer Matrix,” Letters to the Editor/Carbon, Vol. 41, pp. 1325-1328, 2003.
18. A. Allaoui, S. Bai, H.M. Cheng and J.B. Bai, “Mechanical and Electrical Properties of a MWNT/Epoxy Composite,” Composites Science and Technology, Vol. 62, pp. 1993–1998, 2002.
19. 劉家豪, “多壁奈米碳管/酚醛樹脂複合材料之機械性質研究,”清華大學動力機械工程研究所碩士論文, 2004.
20. W. Tang, M. H. Santare and S. G. Advani, “Melt Processing and Mechanical Property Characterization of Multi-Walled Carbon Manotube/ High Density Polyethylene (MWNT/HDPE) Composite Films,” Carbon, Vol. 41, pp. 2779-2785, 2003.
21. M. Olek, J. Ostrander, S. Jurga, H. Mohwald, N. Kotov, K. Kempa, and M. Giersig, “Layer-by-Layer Assembled Composites from Multiwall Carbon Nanotubes with Different Morphologies,” Nano Letters, Vol. 4, pp. 1889-1895, 2004.
22. C. B. Mo, S. I. Cha, K. T. Kim, K. H. Lee and S. H. Hong, “Fabrication of Carbon Nanotube Reinforced Alumina Matrix Nanocomposite by Sol–gel Process,” Materials Science and Engineering A, Vol. 395, pp. 124–128, 2005.
23. D.S. Lim, J.W. An and H. J. Lee, “Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon/Carbon Composites,” Wear, Vol. 252, pp. 512–517, 2002.
24. S.R. Dong, J.P. Tu and X.B. Zhang, “An Investigation of the Sliding Wear Behavior of Cu-matrix Composite Reinforced by Carbon Nanotubes,” Materials Science and Engineering A, Vol. 313,pp. 83–87, 2001.
25. F. H. Gojny, J. Nastalczyk, Z. Roslaniec and K. Schulte, “Surface Modified Multi-Walled Carbon Nanotubes in CNT/Epoxy-Composites,” Chemical Physics Letters, Vol. 370, pp. 820-824, 2003.
26. Y. H. Li, J. Wei, X. Zhang, C. Xu, D. Wu, L. Lu and B. Wei, “Mechanical and Electrical Properties of Carbon Nanotube Ribbons,” Chemical Physics Letters, Vol. 365, pp. 95-100, 2002.
27. J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy and R. Haggenmueller, “Magnetically Aligned Single Wall Carbon Nanotube Films: Preferred Orientation and Anisotropic Transport Properties,” Journal of Applied Physics, Vol. 93, pp. 2157-2163, 2003.
28. D.A. Walters, M.J. Casavant, X.C. Qin, C.B. Huffman, P.J. Boul, L.M. Ericson, E.H. Haroz, M.J. O’Connell, K. Smith, D.T. Colbert and R.E. Smalley, “In-Plane-Aligned Membranes of Carbon Nanotubes,” Chemical Physics Letters, Vol. 338, pp. 14-20, 2001.
29. M. Fujiwara, E. Oki, M. Hamada, Y. Tanimoto, I. Mukouda and Y. Shimomura, “Magnetic Orientation and Magnetic Properties of a Single Carbon Nanotube,” Journal of Physical Chemistry, A, Vol. 105, pp. 4383-4386, 2001.
30. T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani and M. Yumura, “Polymer Composites of Carbon Nanotubes Aligned by Magnetic Field,” Advanced Materials, Vol. 14, pp. 1380-1383, 2002.
31. E. S. Choi, J. S. Brooks, D. L. Eaton, H. Garmestani, D. Li and K. Dahmen, “Enhancement of Thermal and Electrical Properties of Carbon Nanotube Polymer Composites by Magnetic Field Processing,” Journal of Applied Physics, Vol. 94, pp. 6034-6039, 2003.
32. H. Garmestani, M. S. Al-Haik, K. Dahmen, R. Tannenbaum, D. Li, S. S. Sablin and M. Y. Hussaini, “Polymer-Mediated Alignment of Carbon Nanotubes under High Magnetic Fields,” Advanced Materials, Vol. 15, pp. 1918-1921, 2003.
33. J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt and R. E. Smalley, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films,” Applied Physics Letters, Vol. 77, pp. 666-668, 2000.
34. A. Peigney, E. Flahaut, C. Laurent, F. Chastel and A. Rousset, “Aligned Carbon Nanotubes in Ceramic-Matrix Nanocomposites Prepared by High-Temperature Extrusion,” Chemical Physics Letters, Vol. 352, pp. 20-25, 2002.
35. C. A. Cooper, D. Ravich, D. Lips, J. Mayer and H. D. Wagner, “Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix,” Composites Sciences and Technology, Vol. 62, pp. 1105-1112, 2002.
36. J.R. Wood, Q. Zhao and H.D. Wagner, “Orientation of Carbon Nanotubes in Polymers and Its Detection by Raman Spectroscopy,” Composites: Part A, Vol. 32, pp. 391-399, 2001.
37. E. T. Thostenson, and T.W. Chou, “Aligned Multi-Walled Carbon Nanotube-Reinforced Composites: Processing and Mechanical Characterization,” Journal of Physics D: Applied Physics, Vol. 35, pp. 77-80, 2002.
38. L. Jin, C. Bower and O. Zhou, “Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching,” Applied Physics Letters, Vol. 73, pp. 1197-1199, 1998.
39. W. Feng , X.D. Bai , Y.Q. Lian , J. Liang , X.G. Wang, and K. Yoshino, “Well-Aligned Polyaniline /Carbon-Nanotube Composite Films Grown by In-Situ Aniline Polymerization,” Carbon, Vol. 41, pp. 1551-1557, 2003.
40. P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth, “Aligned Carbon Nanotube Arrays from by Cutting a Polymer Resin-Nanotube Composites,” Science, Vol. 265, pp. 1212-1214, 1994.
41. A. M. Fennimore, T. D. Yuzvinsky, Wei-Qiang Han, M. S. Fuhrer, J. Cumings and Zettl, “Rotational Actuators Based on Carbon Nanotubes,” Nature, Vol. 424, pp. 408-410, 2003.
42. F. H. Gojny and K. Schulte, “Functionalisation Effect on the Thermo-Mechanical Behaviour of Multi-wall Carbon Nanotube/Epoxy-Composites,” Composites Science and Technology, Vol. 64, pp. 2303–2308, 2004.
43. Y. Wang, R. Cheng, L. Liang and Y. Wang, “Study on the Preparation and Characterization of Ultra-high Molecular Weight Polyethylene–Carbon Nanotubes Composite Fiber,” Composites Science and Technology, Vol. 65, pp. 793–797, 2005..
44. 大島敬治, 賴狄陽 譯, “塑膠大全,” 復文書局, 台灣台北
45. 村上新一, 洪純仁 譯, “酚醛樹脂,” 復文出版社, 台灣台北, 1981.
46. 許明發, “碳、碳纖維、碳/碳複合材料之加工技術及應用,” 滄海書局, 台灣, 1997.
47. 汪建民, “材料分析,” 民全書局, 台灣台北, 1998.
48. ASTM D796-65, “Standard Practice for Compression Molding Test Specimens of Phenolic Molding Compounds,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
49. ASTM D638-82a, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
50. 杜善, 王彪, “複合材料細觀力學,” 科學出版社, 1998
51. M. S. P. Shaffer, X. Fan and A. H. Windle, “Dispersion and Packing of Carbon
Nanotubes,” Carbon, Vol. 36, pp. 1603-1612, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊