跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建志
研究生(外文):Chieh-Chih Lin
論文名稱:以HSPICE模擬被動式像素感應器電路在非晶矽及晶矽薄膜電晶體的技術探討
論文名稱(外文):HSPICE Modeling and Simulation of Passive Pixel Sensors in a-Si & poly-Si Technology
指導教授:黃惠良黃惠良引用關係楊武智楊武智引用關係
指導教授(外文):Huey-Liang HwangWu-Zhi Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:56
中文關鍵詞:被動式像素感應器非晶矽薄膜電晶體晶矽薄膜電晶體
外文關鍵詞:Passive Pixel Sensorsa-Sipoly-Si
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:1
近年來,平板顯視觸控輸入應用領域,利用非晶矽薄膜電晶體當作光感側元件的應用及發展越來越多元化。於配合主動式液晶顯示器的應用上,通常需要外部多加元件,此如電阻式、電容式 或是電感式的觸控平板元件。這不僅增加元件的材料成本,也相對的影響顯示器的光穿透效率。但若是搭配內建於顯示器的被動式感應電路來使用,則可省去外部多加元件,並可大幅提昇透光度及解析度。此設計為利用平面顯示器前段製程技術,將光感側元件製作在每一個影像畫素中,利用相同於驅動液晶的非晶矽薄膜電晶體,來當感測光信號的元件。此時每一個光信號將可透過光感測電晶體而儲存下來,再經由循序的電路定址,輸出所要的信號,即可達到讀取的功能。
在作法上,光感測元件除可做成主動式外,若以被動式來做,則可提高製作密度。此類似我們過去所瞭解的1T-DRAM作法,可將DRAM容量提高數倍。以單一個電晶體當成單一像素,亦可提高感測解析度。此為被動式像素感應器相對於主動式像素感應器優點之一。另外,被動式像素感應器的作法,可於範圍內提高胞體 (Cell) 的密度,如此以有更高密度的顯示像素,亦可提高其矩陣顯示像素的量子效率。
過去在許多重要的研究報告,明確顯示被動式像素感應器的主要缺點在於電路中的寄生電流。因為它會導致矩陣顯示像素所產生信號的改變。本篇論文中將探討以HSPICE為模擬的工具,來並且模擬矽薄膜電晶體被動式像素感應器各項參數的變化,於本研究中的結果顯示出光感應電流於小至10-12 ~ 10-15 A均可有效的將訊號傳送出,而不會受到電路中的寄生電流的影響,而使訊號產生改變。
依據本論文模擬的結果,若能實際的應用在產品中,若其結果亦能與模擬結果相近,則將可大大的提高被動式像素感應器在矽薄膜電晶體光感測元件的應用,相信不久將來,會有更寬廣、更多采多姿的消費性產品,採用被動式像素感應器來製作。
Recently, new imaging devices that take advantage of the TFT array have been developed in the non-display field. The majority of touch-enabled AMLCDs , active matrix liquid crystal display, are based on resistive, capacitive or inductive touch technology. All these solutions require externally added components or screens, which add cost and reduce optical performance. If we can match the passive pixel sensor circuit and use them on the medical image, we can promote the detection rate of the disease by a wide margin. In this way, a photodiode can be integrated into each pixel of the TFT array, or a photoconductive layer can be formed on the TFT array. Thus, the electric charge generated in the photo-detective can be stored in the pixel, depending on the outside of light signals. Then, the charge intensity information can be read out as the imaging data by sequential line-addressing.
Passive pixel sensors provide an alternative to the conventional Active Pixel Sensor (APS) for high-density CMOS imaging arrays. Similar to the history of the single-transistor DRAM cell, this one-transistor pixel cell boasts one main advantage over the APS. It can achieve a high fill-factor in a smaller area, leading to a high density array of pixels with high quantum efficiency.
Learn in the reports of several experiments, a major weakness in passive pixels is a signal-dependent parasitic current that can contaminate charge signals in different parts of the array. In this thesis we use HSPICE as the tool, and simulate several important parameters in passive pixel sensor circuit in amorphous Si TFT. The simulation result in the thesis demonstrates that, with the photo sensor current as small as 10-12 to 10-15 (A), the signal is not influenced by parasitic current in the circuit and can be conveyed out without deterioration.
According to the result of our study, if it can be practically applied to the products design, and if the result is good, we believe that the application of passive pixel sensor with amorphous Si TFT will move a big step forward and be adopted to use widely in different consumer products.
Chinese abstract
English abstract
Acknowledgement
Contents
List of Figures
Chapter 1 Applications of a-Si & poly-Si TFT photo sensor array
1-1 Introduction
1-2 Overview of Low Temperature Poly-Silicon Thin Film Transistor (LTPS TFT) Technology
1-3 Flat panel Imager using a-Si TFT Array - SHARP Corp.
1-3-1 Device configurations
1-3-2 Device sequence and performance
1-4 Active Matrix LCD with Integrated Optical Touch Panel–Planar system
1-4-1 Photocurrent in a-Si TFTs
1-4-2 TFT LCD with embedded sensor and operation circuit
1-5 Fingerprint Scanner Using a-Si:H TFT Array–LG. Philips LCD Co.
1-5-1 Introduction of fingerprint
1-5-2 Circuit and TFT performance
1-6 Amorphous Silicon Phototransistor n-i-p-i-n for Name Card Reading – Kyunghee University,Korea
1-6-1 Introduction of card reader
1-6-2 I-V characteristics and performance
1-7 TFT Arrays for Direct-Conversion X-Ray Sensors and High-Aperture AMLCDS – OIS Optical Imaging Systems
1-7-1 Introduction of flat panel X-ray detector
1-7-2 X-ray detector structure
Chapter 2 Photo detector of Amorphous Si TFT Introduction
2-1 CMOS Passive and Active Pixel Sensors
2-2 Passive pixel sensor circuit operation introduction
2-2-1 Comments on Operation
2-2-2 PPS Charge to Output Voltage Transfer Function
2-2-3 PPS Readout Speed
2-3 Active pixel sensor circuit operation introduction
2-3-1 Comments on Operation
2-3-2 APS Charge to Output Voltage Transfer Function
2-3-3 APS Readout Speed
Chapter 3 HSPICE Simulation tooling and Modeling introduction
3-1 HSPICE simulation tool introduction
3-1-1 Hspice Applications
3-1-2 Star-Hspice Features
3-2 Amorphous Silicon TFT modeling
3-2-1 Equivalent Circuit & Parameters
3-2-2 Model Equations
3-3 Poly Silicon TFT modeling
3-3-1 Equivalent Circuit & Parameters
3-3-2 Model Equations
3-4 Passive pixel sensor circuit modeling
Chapter 4 Simulation Result
4-1 Amorphous Silicon TFT Simulation
4-2 Poly Silicon TFT Simulation
4-3 PPS With a-Si TFT Simulation
4-4 PPS With poly-Si TFT Simulation
4-5 Actual Sample Fitting Simulation
Chapter 5 Conclusion
5-1 Conclusion
References
Chapter 1
1.A. G. Lewis, I-W. Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, Active matrix liquid crystal display design using low and high temperature processed polysilicon TFTs, in IEDM Tech. Dig., 1990, pp.843-846
2.Y. Matsueda, M. Ashizawa, S. Aruga, H. Ohshima, and S. Morozumi, New technologies for compact TFT LCDs with high-aperture ratio, Soc. Information Display, Tech. Dig., pp.315-318,1990.
3.R.G. Stewart, S.N.Lee, A.G. Ipri, D.A. Furst, S.A. Lipp, and W.R. Roach, A 9V polysilicon LCD with integrated gray-scale drivers, Soc. Information Display, Tech. Dig., pp.319-322,1990.
4.M. Stewart, R.S. Howell, L. Pires, and M.K. Hatalis, Polysilicon TFT technology for active matrix OLED displays, IEEE Trans. Electron Devices, vol. 48, pp845-851, 2001.
5.H. Kuiyama et al., An asymmetric memory cell using a C-TFT for ULSI SRAM, Symp. On VLSI Tech., p.38, 1992
6.T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, Advanced TFT SRAM cell technology using a phase-shift lithography, IEEE trans. Electron Devices, Vol. 42,pp.1305-1313,1995
7. K. Yoshizaki, H. Takaashi, Y. Kamigaki, T. Asui, K. Komori, and H. Katto, ISSCC Digest of Tech., p.166, 1985
8.N.D.Young, G. Harkin, R.M. Bunn, D.J.McCulloch, and I.D. French, The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,IEEE trans. Electron Devices, Vol. 43, pp.1930-1936, 1996.
9.T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, 400 dpi Integrated Contact Type Linear Image Sensors with Poly-Si TFTs Analog Readout Circuit and Dynamic Shift Registers,IEEE Trans.Electron Devices, Vol.38, No.5,pp. 1086-1039, 1991
10.Y. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, A Thermal Printer Head with CMOS Thin-Film Transistors and Heating Elements Integrated on a Chip, IEEE Solid-State Circuits Conference(ISSCC), p.266, 1998
11.N. Yamauchi, Y. Inaba, and M. Okamura, An Integrated Photo detector Amplifier using a-Si p-i-n Photodiodes and Poly-Si Thin Film Transistors, IEEE Photonic Tech. Lett., Vol. 5, p.319, 1993
12.M.G. Glark, Current Status and Future Prospects of Poly-Si, IEEE Proc. Circuits Devices Syst., Vol. 141, No. 1, p3.3,1994
13.S.D.S. Malhi, H. Shichijo, S.K. Banerjee, R. Sundareson, M. Elahy, G.P. Pollack, W. Richardson, A.H. Sha, L.R. Hite, R.H. Womark, P. Chatterjee, and H. William, Characteristics and three-dimension integration of MOSFETs in a small-grain LPVCD polycrystalline silicon, IEEE trans. Electron Devices, Vol. ED-32, No.2, pp.258-281, 1995
14.J. Levinson, F.R. Shepherd, P.J. Scanlon, W.D. Westwood, G. Este, and M. Rider, Conductivity behavior in polycrystalline semiconductor thin film transistors, J. Appl. Phys. Vol.53, pp.1193-1202, 1982
15.P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato, Anomalous off-current mechanisms in n-channel poly-Si thin film transistors, Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
16.M. Hack, I-W. Wu, T.H. King and A.G. Lewis, Analysis of Leakage Currents in Poly-silicon Thin Film Transistors, IEDM Tech. Dig., Vol.93, pp.385-387,1993
17.N. Kubo, N. Kusumoto, T. Inshima, and S. Yamazaki, Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method, IEEE Trans. Electron Devices, Vol.41, pp.1876-1879, 1994
18.Kwon-Young Choi and Min-Koo Han, Anovel gate-overlapped LDD poly-Si thin film transistors, IEEE Electron Device Lett., Vol.17, pp.556-568, 1996
19.R.K. Watts and J.T.Lee, Tenth-Micron Polysilicon Thin Film Transistors, IEEE Electron Devic Lett., Vol.14, pp.515-517, 1993
20.Willem den Boer, Adi Abileah, Pat Green, Terrance Larsson, 56.3 SID2003.
21.Jeong Hyun Kim, Jae Kyun Lee, Youn Gyoung Chang, Beom Jin Moon, 24.1, SID 2000.
22.Sung Hwan Won, Jai Il Ryu, Ji Ho Hur and Jin Jang ; Gyu Jung Jang, Cheor Woo Lee and Suk Tae Jung, 6.4,SID 2001.
23.Gerald Morrison, Manvinder Singh, and David Holmgren, 7.4, SID 2001.
24.W. den Boer, S. Aggas, T. Gu, K H. Byun, C.-B. Qiu, S. V Thomsen, 25.1 SID 1998.
25.Jai Il Ryu, Sung Hwan Won, and Jin Jang ; Gyu Jung Jang, Cheor Woo Lee, and Suk Tae Jung, 24.2, SID 2000.
Chapter 2
26.A. A. Muravski, S. Ye. Yakovenko ; C. Crell ; A. D. Wieck, 24.3, SID 2000.
27.R. Akins , Motorola Advanced Technology Center, Schaumburg, IL USA ; SID 1999.
28.Yuzo Odoi, Fumio Matsukawa, Hitoshi Nagata and Tadashi Sumi14.1,DID 2002.
29.Yoshihiro Izumi, Osamu Teranuma, Masayuki Takahashi, Tamotsu Sato, Kazuhiro Uehara, Hisao Okada, Yasukuni Yamane, AMD10-2 , IDW 2003.
30.P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 10, NO. 4, APRIL 1998.
31.Ronald Lin, Qiang Lu, Pushkar Ranade, Tsu-Jae King, and Chenming Hu, Fellow, IEEE ELECTRON DEVICE LETTERS, VOL. 23, NO. 1, JANUARY 2002.
32.Xiying Chen, Bahram Nabet, Adriano Cola, Fabio Quaranta, and Marc Currie, IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 5, MAY 2003.
Chapter 3
33.Jin Jang, Kyu Man Kim, Kyu Sik Cho, Byoung Kwon Choo, and Gregory Um, IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 2, FEBRUARY 2003.
34.Li-Hong Laih, Tien-Chang Chang, Yen-Ann Chen, Member, IEEE, TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 9, SEPTEMBER 1998.
35.Natalie Wong, 991074190 , University of Toronto, CMOS Integrated Photodiode and Low Voltage Transimpedance Amplifier in Si-OEIC ApplicationApril 9, 2001.
36.Cha-Shin Lin, Li-Ping Tu, Rong-Hwei Yeh, and Jyh-Wong Hong, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 7, JULY 2003.
37.Wei Gao, Al-Sameen Khan, Paul R. Berger, and R. G. Hunsperger, Appl. Phys. Lett. 65 (15), 10 October 1994.
38.Ching-Ting Lee and Hsin-Ying Lee, IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 9, SEPTEMBER 2003.
39.K.S. Karim, P.Servati, N. Mohan, A. Nathan and J.A. Rowlands, VHDL-AMS Modeling and Simulation od a Passive Pixel Sensor in a-Si:H Technology for Medical Imaging, Electrical and Computer Engineering, University of Waterloo, 2003
Chapter 4
40.R. Street, X.D. Wu, R. Weisfield, S. Ready, R. Apte, M. Nguyen, and P. Nylen, “Two Dimensional Amorphous Silicon Image Sensor Arrays,” MRS Symposium Proceedings, 377, p. 757, 1995.
41.W. Zhao and J. A. Rowlands, “X-ray imaging using amorphous selenium: Feasibility of a flat panel self-scanned detector for digital radiology,” Medical Physics, 22(10), p. 1595, 1995.
42.J.H. Siewerdsen, “Signal, Noise and Detective Quantum Efficiency of a-Si:H Flat-Panel Imagers,” PhD Thesis, University of Michigan, 1998.
43.R.V.R. Murthy, P. Servati, A. Nathan and S.G. Chamberlain, "Optimization of n+uc-Si:H contact layer for low leakage current in a-Si:H thin film transistors," Journal of Vacuum Science and Technology B, 18(2), p. 685, 2000.
44.P. Servati, “Modeling of Static and Dynamic Characteristics of a-Si:H TFTs,” MASc Thesis, University Of Waterloo, 2000.
45.I. Fujieda, R.A. Street, R.L. Weisfield, S. Nelson, P. Nylen, V. Perez-Mendez, and G. Cho, “High Sensitivity Readout of 2D a-Si:H Image Sensors,” Japan Journal of Applied Physics, 32, p. 198, 1993.
46.W. Zhao, I. Blevis, S. Germann, and J. A. Rowlands, Digital radiology using active matrix readout of amorphous selenium: construction and evaluation of a prototype realtime detector,” Medical Physics, 24(12), p. 1834, 1997.
47.J. Graeme, Photodiode Amplifiers, McGraw-Hill, New York, Chapter 1, 1996.
48.L.E. Antonuk, J. Boudry, C.W. Kim, M. Longo, E.J. Morton, J. Yorkston, and R.A. Street, “Signal, noise, and readout considerations in the development of amorphous silicon photodiode arrays for radiotherapy and diagnostic xray imaging,” Medical Imaging V: Imaging Physics, Proceedings of SPIE, 1443, p. 108, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top