|
[1] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 1997. [2] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002. [3] T. L. Skvarenina and W. E. DeWitt, Electrical Power and Controls, New Jersey: Prentice Hall, 2001. [4] D. W. Hart, Introduction to Power Electronics, New Jersey: Prentice-Hall, 1997. [5] J. Vithayathil, Power Electronics: Principles and Applications, New York: McGraw-Hill Companies, 1995. [6] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, New York: Pergamon Press, 1988. [7] J. Arrillaga, D. Bradley and P. Bodger, Power System Harmonics, New York: John Wiley & Sons, 1985. [8] P. M. J. Heskes and J. H. R. Enslin, “Power quality behavior of different photovoltaic inverter topologies,” Power Conversion Intelligent Motion (PCIM) International conference, 2003. [9] H. Broeck and M. Miller, “Harmonics in DC to AC converters of single phase uninterruptible power supplies,” IEEE Telecommunications Energy Conference, pp. 653-658, 1993. [10] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” IEEE International Conference on Power Electronics and Drive Systems, vol. 2, pp. 571-576, 1995. [11] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” International Conference on Power System Technology, vol. 3, pp. 1659-1664, 2000. [12] S. Vukosavic, L. Peric, E. Levi and V. Vuckovic, “Reduction of the output impedance of PWM inverters for uninterruptible power supply,” IEEE Power Electronics Specialists Conference, pp. 757-762, 1990. [13] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” IEE Conference on Power Electronics and Applications, vol. 4, pp. 65-70, 1993. [14] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993. [15] A. C. dos Reis, V. J. Farias, L. C. de Freitas and J. B. Vieira Jr., “A full-bridge three-level single phase inverter with stressless commutation cell and special PWM technique,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 551-557, 1998. [16] E. A. Coelho, P. C. Cortizo and P. F. D. Garcia, “Small signal stability for single phase inverter connected to stiff AC system,” IEEE Conference on Industry Applications, vol. 4, pp. 2180-2187, 1999. B. PWM and current controls [17] P. N. Enjeti, P. D. Ziogas and J. F. Lindsay, “Programmed PWM techniques to eliminate harmonics: a critical evaluation,” IEEE Trans. Ind. Applicat., vol. 26, no. 2, pp. 302-316, 1990. [18] J. Holtz, “Pulse modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, pp. 410-420, 1992. [19] G. Venkataramanan, D. M. Divan and T. M. Jahns, “Discrete pulse modulation strategies for high-frequency inverter systems,” IEEE Trans. Power Electron., vol. 8, no. 3, pp. 279-287, 1993. [20] F. Blaabjerg, J. K. Pedersen and P. Thoegersen, “Improved modulation techniques for PWM-VSI drives,” IEEE Trans. Ind. Electron., vol. 44, no. 1, pp. 87-95, 1997. [21] H. Dehbonei, L. Borle and C. V. Nayar, “A review and a proposal for optimal harmonic mitigation in single-phase pulse width modulation,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 408-414, 2001. [22] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002. [23] P. A. Dahono and I. Krisbiantoro, “A hysteresis current controller for single-phase full-bridge inverters,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 415-419, 2001. [24] N. Abdel-Rahim and J. E. Quaicoe, “Three-phase voltage-source UPS inverter with voltage-controlled current-regulated feedback control scheme,” IEEE International Conference on Industrial Electronics, Control and Instrumentation, vol. 1, pp. 479-502, 1994. [25] S. K. Chung, “Steady-state error minimisation technique for single-phase PWM inverters,” IEE Electronics Letters, vol. 38, no. 22, pp. 1043-1048, 2002. [26] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [27] M. Prodanovic, T. C. Green and H. Mansir, “A survey of control methods for three-phase inverters in parallel connection,” IEE International Conference on Power Electronics and Variable Speed Drives, no. 475, pp. 472-477, 2000. [28] Y. Xing, L. P. Huang and Y. G. Yan, “A decoupling control method for inverters in parallel operation,” IEEE International Conference on Power System Technology, vol. 2, pp. 1025-1028, 2002. [29] M. E. Fraser and C. D. Manning, “Performance of average current mode controlled PWM UPS inverter with high crest factor load,” IEE international Conference on Power Electronics and Variable-Speed Drives, no. 399, pp. 661-667, 1994. [30] G. Alarcon, V. Cardenas, S. Ramirez, N. Visairo, C. Nunez, M. Oliver and H. Sira-Ramirez, “Nonlinear passive control with inductor current feedback for an UPS inverter,” IEEE Power Electronics Specialists Conference, vol. 3, pp. 1414-1418, 2000. [31] J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” IEEE International Conference on Power Electronics and Motion Control, vol. 3, pp. 1122-1126, 2000. [32] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 379-384, 1995. [33] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatron., vol. 4, no. 1, pp. 60–70, 1999. [34] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proceedings on Electric Power Applications, vol. 148, no. 6, pp. 503-512, 2001. C. Voltage and waveform control [35] C. Rech, H. Pinheiro, H. A. Grundling, H. L. Hey and J. R. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 986-991, 2001. [36] K. Guo, W. Xuejuan and J. Chen, “PWM VSI waveform control based on feedback and feedforward technology,” IEEE International Conference on Power Electronics and Drive Systems, vol. 2, pp. 638-642, 2001. [37] J. M. Guerrero, L. G. de Vicuna, J. Miret, J. Matas, and M. Castilla, “Integral control technique for single-phase UPS inverter,” IEEE International Symposium on Industrial Electronics, vol. 4, pp. 257-261, 2002. [38] M. Lopez, J. L. Garcia de Vicuna, M. Castilla, J. Matas and O. Lopez, “Control design for parallel-connected DC-AC inverters using sliding mode control,” IEEE International Conference on Power Electronics and Variable Speed Drives, vol. 475, pp. 457-460, 2000. [39] A. Okwi, S. Kaga and H. lkeda, “Control method of PWM inverter for driving LSM to reduce the burden of output transformer,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 571-577, 1998. [40] S. J. Chiang, T. L. Tai and T. S. Lee, “Variable structure control of UPS inverters,” IEE Proceedings Electric Power Applications, vol. 145, no. 6, pp. 559-567, 1998. [41] O. Kukrer, H. Komurcugil and N. S. Bayindir, “Control strategy for single-phase UPS inverters,” IEE Proceedings Electric Power Applications, vol. 150, no. 6, pp. 743-746, 2003. [42] M. J. Ryan and R. D. Lorenz, “A synchronous-frame controller for a single-phase sine wave inverter,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 813-819, 1997. [43] X. Sun, M. H. L. Chow, F. H. F. Leung, D. Xu, Y. Wang and Y. S. Lee, “Analogue implementation of a neural network controller for UPS inverter applications,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 305-313, 2002. [44] O. Kukrer and H. Komurcugil, “Deadbeat control method for single-phase UPS inverters with compensation of computation delay,” IEE Proceedings on Electric Power Applications, vol. 146, no. 1, pp. 123-128, 1999. [45] J. M. Guerrero, L. Garcia de Vicuna, J. Miret, J. Matas and M. Castilla, “A nonlinear feed-forward control technique for single-phase UPS inverters,” IEEE Conference on Industrial Electronics Society, vol. 1, pp. 257-261, 2002. [46] M. J. Ryan, W. E. Brumsickle and R. D. Lorenz, “Control topology options for single-phase UPS inverters,” IEEE Trans. Ind. Applicat., vol. 33, no. 2, pp. 493-501, 1997. [47] T. Senjyu and K. Uezato, “Sinusoidal voltage controller for uninterruptible power supply by robust control,” IEEE Power Conversion Conference, pp. 200-205, 1993. [48] K. S. Low, “A DSP-based single-phase AC power source,” IEEE Trans. Ind. Electron., vol. 46, no. 5, 1999 [49] E. G. Carati, V. F. Montagner and H. A. Grundling, “A single-phase AC power source using robust model reference adaptive control,” IEEE Conference on Industrial Electronics Society, vol. 2, pp. 1428-1432, 2000. [50] H. van der Broeck and P. Lurkens, “Programmable AC power source,” IEE European Conference on Power Electronics and Applications, vol. 3, pp. 255-260, 1993. [51] M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” IEEE Applied Power Electronics Conference and Exposition, vol. 3, pp. 1709-1713, 2004. [52] E. G. Carati, C. M. Richter and H. A. Gründling, “A three-phase power source using robust model reference adaptive control,” IEEE Conference on Decision and Control, vol. 4, pp. 4078-4083, 2000. [53] C. M. Liaw and S. J. Chiang, “Robust control of multimodule current-mode controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp.455-465, 1993. D. Dead time compensation [54] D. Leggate and R. J. Kerkman, “Pulse-based dead-time compensator for PWM voltage inverters,” IEEE Trans. Ind. Electron., vol. 44, pp. 191-197, 1997. [55] S. G. Jeong and M. H. Park, “The analysis and compensation of dead-time effects in PWM inverters” IEEE Trans. Ind. Electron., vol. 38, no. 2, pp. 108-114, 1991. [56] T. Sukegawa, K. Kamiyama, K. Mizuno, T. Matsui and T. Okuyama, “Fully digital, vector-controlled PWM VSI-fed AC drives with an inverter dead-time compensation strategy,” IEEE Trans. Ind. Applicat., vol. 27, no. 3, pp. 552-559, 1991. [57] J. W. Choi and S. K. Sul, “New dead time compensation eliminating zero current clamping in voltage-fed PWM inverter,” IEEE Conference on Industry Applications, vol. 1, no. 3, pp. 977-984, 1994. [58] W. C. Jong, S. I. Yong and K. S. Seung, “Inverter output voltage synthesis using novel dead time compensation,” IEEE Conference on Industry Applied Power Electronics, vol. 1, no. 3, pp. 100-106, 1994. [59] S. O. Won, T. K. Yong and J. K. Hee, “Dead time compensation of current controlled inverter using space vector modulation method,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, no. 3, pp. 374-378, 1995. [60] C. B. Jacobina, A. M. N. Limal and A. C. Oliveira, “Enhanced PWM voltage waveform and dead time compensation for AC drive systems,” IEEE Conference on Industrial Electronics, vol. 2, no. 3, pp. 694-697, 1997. [61] J. Llaquet, D. Gonzalez, A. Arias, J. L.Romeral and D. Bedford, “EMI effects of hard-less dead time compensated PWM voltage inverter,” IEEE Conference on Harmonics and Quality of Power, vol. 1, no. 3, pp. 516-520, 1998. [62] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999. [63] X. Yu, M. W. Dunnigan and B. W. Williams, “Phase voltage estimation of a PWM VSI and its application to vector-controlled induction machine parameter estimation,” IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 1181-1184, 2000. [64] A. C. Oliveira, A. M. N. Lima and C. B. Jacobina, “Varying the switching frequency to compensate the dead-time in pulse width modulated voltage source inverters,” IEEE Conference on Power Electronics, vol. 1, no. 2, pp. 244-249, 2001. [65] C. Attaianese, D. Capraro and G. Tomasso, “A low cost digital SVM modulator with dead time compensation,” IEEE Conference on Power Electronics, vol. 1, no. 4, pp. 158-163, 2001. [66] X. Jiang, W. Shen and X. Huang, “High performance space-vector PWM inverters using nonlinear voltage gain correction,” IEEE Conference on Electrical Machines and Systems, vol. 1, no. 3, pp. 534-537, 2001. [67] H. S. Kim, H. W. Kim and M. J. Youn, “A new on-line dead-time compensation method based on time delay control,” IEEE Conference on Industrial Electronics, vol. 2, no. 2, pp. 1184-1189, 2001. [68] J. L. Lin, “A new approach of dead-time compensation for PWM voltage inverters,” IEEE Trans. Circuits Syst., vol. 49, no. 4, pp. 476-483, 2002. [69] A. C. Oliveira, C. B. Jacobina, A. M. N. Lima and E. R. C. da Silva, “Dead-time compensation in the zero-crossing current region,” IEEE Power Electronics Specialist Conference, vol. 4, no. 3, pp. 1937-1942, 2003. [70] H. S. Kim, H. T. Moon and M. J. Youn, “On-line dead-time compensation method using disturbance observer,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1336-1345, 2003. E. Multi-modular connection and three phase inverter [71] F. Barzegar and S. Cuk, “A new switched-mode amplifier produces clean three-phase power,” TESLAco, Pasadena, Advances in Switched-Mode Power Conversion, vol. 3, pp. 179-193, 1983. [72] K. Matsui, Y. Murai, M. Watanabe, M. Kaneko and F. Ueda, “A pulsewidth-modulated inverter with parallel connected transistors using current-sharing reactors,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 186-191, 1993. [73] F. Ueda, K. Matsui, M. Asao and K. Tsuboi, “Parallel-connections of pulsewidth modulated inverters using current sharing reactors,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 673-679, 1995. [74] F. V. P. Robinson, “The interleaved operation of power amplifiers,” IEE International Conference on Power Electronics and Variable Speed Drives, vol. 456, pp. 606-611, 1998. [75] B. H. Li, S. S. Choi and D. M. Vilathgamuwa, “Transformerless dynamic voltage restorer,” IEE Proceedings-Generation on Transmission and Distribution, vol. 149, no. 3, pp. 263-273, 2002. [76] A. Chibani and M. Nakaoka, “A new state-feedback control based 3 phase PWM inverter with improved parallel resonant DC link,” IEEE Industry Applications Society Conference, vol. 1, pp. 801-808, 1992. [77] G. Yao, S. Phillips and L. Norum, “Three-phase inverters-analysis of ability to maintain symmetrical output voltages,” IEEE International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1033-1039, 1993. [78] V. M. Cardenas, S. Horta and R. Echavarria, “Elimination of dead time effects in three phase inverters,” IEEE International Conference on Power Electronics Congress, pp. 258-262, 1996. [79] R. Stoicescu, K. Miu, C. O. Nwankpa, D. Niebur and Xiaoguang Yang, “Three-phase converter models for unbalanced radial power-flow studies,” IEEE Trans. Power Syst., vol. 17, no. 4, pp. 1016-1021, 2002. [80] K. Matsui, Y. Murai, M. Watanabe, M. Kaneko and F. Ueda, “A pulsewidth-modulated inverter with parallel connected transistors using current-sharing reactors,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 186-191, 1993. [81] F. Ueda, K. Matsui, M. Asa and K. Tsuboi, “Parallel-connections of pulsewidth modulated inverters using,” IEEE Trans. Power Electron., vol. 10, no.6, pp. 673-679, 1995. [82] F. V. P. Robinson, “The interleaved operation of power amplifiers, ”IEEE International Conference on Power Electronics and Variable Speed Drives, vol. 456, pp. 606-611, 1998. [83] B. H. Li, S. S. Choi and D. M. Vilathgamuwa, “Transformerless dynamic voltage restorer,” IEE Proceedings-Generation on Transmission and Distribution, vol. 149, no. 3, pp. 263-273, 2002. [84] A. Chibani and M. Nakaoka, “A new state-feedback control based three-phase PWM inverter with improved parallel resonant DC link,” IEEE Industry Applications Society Conference, vol. 1, pp. 801-808, 1992. [85] G. Yao, S. Phillips and L. Norum, “Three-phase inverters-analysis of ability to maintain symmetrical output voltages,” IEEE International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1033-1039, 1993. [86] V. M. Cardenas, S. Horta and R. Echavarria, “Elimination of dead time effects in three phase inverters,” IEEE International Conference on Power Electronics Congress, pp. 258-262, 1996. [87] R. Stoicescu, K. Miu, C. O. Nwankpa, D. Niebur and Y. Xiaoguang, “Three-phase converter models for unbalanced radial power-flow studies,” IEEE Trans. Power Syst., vol. 17, no. 4, pp.1016-1021, 2002. [88] M. Milanovic, D. Dolinar, and A. Ravnjak, “DC to Three-phase inverter based on two-phase to three-phase transformation,” IEEE Trans. Ind. Electron.,vol. 3, pp 784-788, 2002. [89] R. J. Kakalec, “A comparison of three phase Scott-T and ferroresonant transformers,” IEEE Electrical Electronics Insulation Conference, pp. 619-623, 1995. [90] P. Li, B. Dan, K. Yong, and C. Jian, “Research on three-phase inverter with unbalanced load,” IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 128-133, 2004. [91] A. M. Cross, P. D. Evans and A. J. Forsyth, ”DC link current in PWM inverters with unbalanced and nonlinear loads,” IEE Proceedings on Electric Power Applications, vol. 146, pp. 620-626, 1999. [92] P. N. Enjeti, P. D. Ziogas and J. F. Lindsay, ”Programmed PWM techniques to eliminate harmonics: a critical evaluation,” IEEE Trans. ind. Applicat., vol. 26, no. 2, pp. 302-316, 1990. F. Commercialized AC power source [93] “Programmable AC source specification 6463,” Chroma Ate INC. [94] “Single and three phase AC power sources models from 500 VA to 12kVA,” Pacific INC. [95] “Single and three phase AC power sources models from 1 kVA to 12 kVA manual or programmable control,” Pacific INC. [96] “P series AC power source,” California Instruments INC. [97] “LX series AC power source,” California Instruments INC.
[98] “BL1350 series AC power source,” Behlman Electronics INC. [99] “Elgar 1203SL 3 phase 1200VA AC Power Source,” Test Equipment Corporation. [100] “Pulse Width Modulated Power Controller,” Permedyn INC. G . Distributed power systems and modular connection of inverters [101] P. Karlesson and J. Svensson, “DC bus voltage control for a distributed power system,” IEEE Trans. Power Electron., vol. 18, no.6, pp. 1405-1412, 2003. [102] G. S. Thandi, R. Zhang, K. Xing, F. C. Lee and D. Boroyevich, “Modeling control and stability analysis of a PEBB based DC DPS,” IEEE Trans. Power Delivery, vol. 14, no.2, pp. 497-505, 1999. [103] J. S. Manguelle and A. Rufer, “Multilevel inverter for power system applications highlighting asymmetric design effects from a supply network point of view,” IEEE Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 435-440, 2003. [104] S. Mariethoz and A. Rufer, “New configurations for the three-phase asymmetrical multilevel inverter,” IEEE Industry Applications Conference, vol. 2, pp. 828-835, 2004. [105] R. Teodorescu, F. Blaabjerg, J. K. Pedersen, E. Cengelci and P. N. Enjeti, “Multilevel inverter by cascading industrial VSI,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 832-838, 2002. [106] M. Hashad and J. Iwaszkiewicz, “A novel orthogonal-vectors-based topology of multilevel inverter by cascading industrial VSI,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 832-838, 2002. [107] E. Cengelci, P. N. Enjeti and J. W. Gray, “A new modular motor-modular inverter concept for medium-voltage adjustable-speed-drive systems,” IEEE Trans. Ind. Applicat., vol. 36, no. 3, pp. 786-796, 2000. [108] E. Cengelci, P. Enjeti, C. Singh, F. Blaabjerg and J. K. Pederson, “New medium voltage PWM inverter topologies for adjustable speed AC motor drive systems,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 565-571, 1998. [109] C. Rech, H. A. Grundling, H. L. Hey, H. Pinheiro and J. R. Pinheiro, “A generalized design methodology for hybrid multilevel inverters,” IEEE Industrial Electronics Society Conference, vol. 1, pp. 834-839, 2002. [110] Z. Qianzhi, Z. Kai and W. Jugui, “A novel single-three phase inverter adopting CTA scheme,” IEEE Power Electronics and Motion Control Conference, vol. 2, pp. 980-984, 2000. [111] K. Sheldon, “Connecting multiple Sunny Boy Inverters to a three phase utility,” Technical Note, SMA American, Incorporated Copyright, rev. 1.6, 2002. [112] S B. Kjær. “DC-AC inverter concepts for photovoltaic (PV) applications,” Aalborg, 2004. [113] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004 [114] J. Rodríguez, J. S. Lai and F Z Peng, “Multilevel Inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, 2002
|