跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭根廷
研究生(外文):Ken-Ting Kuo
論文名稱:模組化建構之三相變頻器及其波形控制
論文名稱(外文):MODULAR CONNECTED THREE-PHASE INVERTERS AND THEIR WAVEFORM CONTROL
指導教授:廖聰明廖聰明引用關係
指導教授(外文):Chang-Ming Liaw
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:159
中文關鍵詞:變頻器單相三相模組組接雙可調度強健控制
外文關鍵詞:InverterSingle-phaseThree-phaseModular connectionTwo-degrees-of-freedomRobust control
相關次數:
  • 被引用被引用:2
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:110
  • 收藏至我的研究室書目清單書目收藏:1
本論文旨在從事以二個或三個單相模組組接成多種三相變頻器,並從事其波形控制研究。首先設計製作具強健電壓波形控制特性之單相變頻器模組。在其控制方面,首先設計一雙可調度電流控制脈寬調制切換機構,使濾波電感電流可緊密追隨其命令。再設計一雙可調度強健電壓波形控制器,其中之迴授及命令前向控制器係依據估測之正規動態模式推導設計。而以觀測器為主之擾動前向強健控制器及強健波形控制器係設計以得強健控制特性,改善在未知、變動及非線性負載下之波形追控效能。

在建構了具有優越輸出性能之單相變頻器後,將其三組接成Y-接或 -接三相變頻器,及二組接成V-接或史考特-T(Scott-T)接三相變頻器。為改善V-接三相變頻器之三相電壓波形,另外提出一強健平衡波形控制器,將由合成第三相之波形與其命令間之誤差,經由適當之加權因子及相移後產生之補償信號加至另兩相之命令從事平衡補償。所建構變頻器之實測性能評估項目包括:在各式負載下之弦波穩態波形及其電力品質特性、弦波幅度步級響應、弦波掃頻波形追控特性、含諧波之任意波形追控特性等。

關鍵詞:變頻器、單相、三相、模組組接、波形控制、雙可調度、強健控制。
This thesis is mainly concerned with the development of various three-phase inverters constructed using two or three single-phase modules, and the study of their waveform controls. First, the single-phase inverter module with robust voltage waveform control is designed and implemented. In its control aspect, a two-degrees-of-freedom (2DOF) current- controlled PWM scheme is first designed to let the filter inductor current closely follow its command. Then a robust 2DOF voltage robust waveform control scheme is developed. The nominal plant dynamic model is first estimated, and it is employed to design its feedback controller and command feedforward controller. Then an observer-based robust disturbance feedforward controller and a robust waveform controller are designed to yield improved voltage waveform control under unknown, varying and nonlinear loads.
Having established the single-phase inverter module with good voltage waveform control performance, three modules are connected to form a Y-connected and a -connected three-phase inverters. And a V-connected and a Scott-T connected three-phase inverters are constructed using two modules. In order to improve the three-phase output voltage waveforms of V-connected three-phase inverter, a robust balance waveform controller is further proposed. The weighted and phase shifted robust compensation signals are yielded from the voltage waveform tracking error of the third phase, and they are added to the waveform commands of the two modules for performing the imbalance compensation control. The performance evaluation for established inverters includes: sinusoidal waveforms and power quality characteristics under various types of loads, step magnitude response of sinewave, swept-sine waveform tracking response and arbitrary waveform tracking response, etc.

Key words: Inverter, single-phase, three-phase, modular connection, waveform control, two-degrees-of-freedom, robust control.
誌謝………………………………………………………I
中文摘要…………………………………………………II
英文摘要…………………………………………………III
圖目錄……………………………………………………VII
表目錄……………………………………………………XIV
第一章、 簡介……………………………………………1
第二章、 變頻器基本實務………………………………7
2.1 簡介…………………………………………………7
2.2 變頻器之切換控制及頻譜分析……………………7
2.2.1 直接責任週期電壓控制…………………………7
2.2.2 修正式PWM………………………………… 12
2.2.3 電流控制模式………………………………13
2.3 變頻器之電力品質分析……………………………15
2.3.1 電力品質之性能參數………………………15
2.3.2 IEEE 519 諧波管制標準…………………17
2.4 變頻器之實務特性…….……………………………19
2.4.1 變頻器之關鍵參數及其折衷考量……………… 19
2.4.2 空白時間(Dead-time)之影響及補償控制…21
2.4.3 直流鏈之漣波特性….………………………23
2.4.4 變頻器任意波形追控特性及其應用…………24
2.5 三相變頻器……………………………………………24
2.6 隔離型單相變頻器之應用……………………………26
2.6.1 隔離型單相變頻器……………………………26
2.6.2 隔離型單相變頻器之應用……………………30
2.7 多階模組化變頻器……….……………………………34
第三章、 單相變頻器之研製及其強健波形控制…………36
3.1 簡介……………………………………………………36
3.2 單相變頻器……………………………………………37
3.2.1 電力電路與PWM切換機構……………………37
3.2.2 輸出濾波器之設計……………………………39
3.2.3 開迴路測試性能評估…………………………46
3.3 所提之變頻器強健波形控制機構 ……………………46
3.3.1 電流控制架構…………………………………46
3.3.2 電壓控制架構…………………………………53
3.3.3 閉迴路控制量測結果…………………………57
第四章、 三模組組接之三相變頻器………………………77
4.1 簡介…………………………………………77
4.2 共同直流鏈之單相變頻器模組連接限制…77
4.3 Δ-接三相變頻器…………………………78
4.3.1 系統組成…………………………78
4.3.2 基本追控特性……………………83
4.3.3 特殊波形追控特性………………91
4.4 Y-接三相變頻器…………………………93
4.4.1 系統組成…………………………93
4.4.2 基本追控特性……………………97
4.4.3 特殊波形追控特性………………97
第五章、 二模組組接之三相變頻器………………………113
5.1 簡介……………………………………………………113
5.2 V-接三相變頻器.…………………………………… 113
5.2.1 系統組成…………………………113
5.2.2 基本追控特性……………………115
5.2.3 特殊波形追控特性………………115
5.3 Scott-T接三相變頻器………………………………123
5.3.1 系統組成…………………………123
5.3.2 基本追控特性……………………123
5.3.3 特殊波形追控特性………………127
5.4 三相電壓波形之補償控制…………………139
5.4.1 性能評估…………………………139
第六章、 結論………………………………………………148
參考文獻……………………………………………………149
[1] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 1997.
[2] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002.
[3] T. L. Skvarenina and W. E. DeWitt, Electrical Power and Controls, New Jersey: Prentice Hall, 2001.
[4] D. W. Hart, Introduction to Power Electronics, New Jersey: Prentice-Hall, 1997.
[5] J. Vithayathil, Power Electronics: Principles and Applications, New York: McGraw-Hill Companies, 1995.
[6] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, New York: Pergamon Press, 1988.
[7] J. Arrillaga, D. Bradley and P. Bodger, Power System Harmonics, New York: John Wiley & Sons, 1985.
[8] P. M. J. Heskes and J. H. R. Enslin, “Power quality behavior of different photovoltaic inverter topologies,” Power Conversion Intelligent Motion (PCIM) International conference, 2003.
[9] H. Broeck and M. Miller, “Harmonics in DC to AC converters of single phase uninterruptible power supplies,” IEEE Telecommunications Energy Conference, pp. 653-658, 1993.
[10] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” IEEE International Conference on Power Electronics and Drive Systems, vol. 2, pp. 571-576, 1995.
[11] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” International Conference on Power System Technology, vol. 3, pp. 1659-1664, 2000.
[12] S. Vukosavic, L. Peric, E. Levi and V. Vuckovic, “Reduction of the output impedance of PWM inverters for uninterruptible power supply,” IEEE Power Electronics Specialists Conference, pp. 757-762, 1990.
[13] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” IEE Conference on Power Electronics and Applications, vol. 4, pp. 65-70, 1993.
[14] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993.
[15] A. C. dos Reis, V. J. Farias, L. C. de Freitas and J. B. Vieira Jr., “A full-bridge three-level single phase inverter with stressless commutation cell and special PWM technique,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 551-557, 1998.
[16] E. A. Coelho, P. C. Cortizo and P. F. D. Garcia, “Small signal stability for single phase inverter connected to stiff AC system,” IEEE Conference on Industry Applications, vol. 4, pp. 2180-2187, 1999.
B. PWM and current controls
[17] P. N. Enjeti, P. D. Ziogas and J. F. Lindsay, “Programmed PWM techniques to eliminate harmonics: a critical evaluation,” IEEE Trans. Ind. Applicat., vol. 26, no. 2, pp. 302-316, 1990.
[18] J. Holtz, “Pulse modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, pp. 410-420, 1992.
[19] G. Venkataramanan, D. M. Divan and T. M. Jahns, “Discrete pulse modulation strategies for high-frequency inverter systems,” IEEE Trans. Power Electron., vol. 8, no. 3, pp. 279-287, 1993.
[20] F. Blaabjerg, J. K. Pedersen and P. Thoegersen, “Improved modulation techniques for PWM-VSI drives,” IEEE Trans. Ind. Electron., vol. 44, no. 1, pp. 87-95, 1997.
[21] H. Dehbonei, L. Borle and C. V. Nayar, “A review and a proposal for optimal harmonic mitigation in single-phase pulse width modulation,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 408-414, 2001.
[22] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002.
[23] P. A. Dahono and I. Krisbiantoro, “A hysteresis current controller for single-phase full-bridge inverters,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 415-419, 2001.
[24] N. Abdel-Rahim and J. E. Quaicoe, “Three-phase voltage-source UPS inverter with voltage-controlled current-regulated feedback control scheme,” IEEE International Conference on Industrial Electronics, Control and Instrumentation, vol. 1, pp. 479-502, 1994.
[25] S. K. Chung, “Steady-state error minimisation technique for single-phase PWM inverters,” IEE Electronics Letters, vol. 38, no. 22, pp. 1043-1048, 2002.
[26] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[27] M. Prodanovic, T. C. Green and H. Mansir, “A survey of control methods for three-phase inverters in parallel connection,” IEE International Conference on Power Electronics and Variable Speed Drives, no. 475, pp. 472-477, 2000.
[28] Y. Xing, L. P. Huang and Y. G. Yan, “A decoupling control method for inverters in parallel operation,” IEEE International Conference on Power System Technology, vol. 2, pp. 1025-1028, 2002.
[29] M. E. Fraser and C. D. Manning, “Performance of average current mode controlled PWM UPS inverter with high crest factor load,” IEE international Conference on Power Electronics and Variable-Speed Drives, no. 399, pp. 661-667, 1994.
[30] G. Alarcon, V. Cardenas, S. Ramirez, N. Visairo, C. Nunez, M. Oliver and H. Sira-Ramirez, “Nonlinear passive control with inductor current feedback for an UPS inverter,” IEEE Power Electronics Specialists Conference, vol. 3, pp. 1414-1418, 2000.
[31] J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” IEEE International Conference on Power Electronics and Motion Control, vol. 3, pp. 1122-1126, 2000.
[32] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 379-384, 1995.
[33] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatron., vol. 4, no. 1, pp. 60–70, 1999.
[34] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proceedings on Electric Power Applications, vol. 148, no. 6, pp. 503-512, 2001.
C. Voltage and waveform control
[35] C. Rech, H. Pinheiro, H. A. Grundling, H. L. Hey and J. R. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 986-991, 2001.
[36] K. Guo, W. Xuejuan and J. Chen, “PWM VSI waveform control based on feedback and feedforward technology,” IEEE International Conference on Power Electronics and Drive Systems, vol. 2, pp. 638-642, 2001.
[37] J. M. Guerrero, L. G. de Vicuna, J. Miret, J. Matas, and M. Castilla, “Integral control technique for single-phase UPS inverter,” IEEE International Symposium on Industrial Electronics, vol. 4, pp. 257-261, 2002.
[38] M. Lopez, J. L. Garcia de Vicuna, M. Castilla, J. Matas and O. Lopez, “Control design for parallel-connected DC-AC inverters using sliding mode control,” IEEE International Conference on Power Electronics and Variable Speed Drives, vol. 475, pp. 457-460, 2000.
[39] A. Okwi, S. Kaga and H. lkeda, “Control method of PWM inverter for driving LSM to reduce the burden of output transformer,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 571-577, 1998.
[40] S. J. Chiang, T. L. Tai and T. S. Lee, “Variable structure control of UPS inverters,” IEE Proceedings Electric Power Applications, vol. 145, no. 6, pp. 559-567, 1998.
[41] O. Kukrer, H. Komurcugil and N. S. Bayindir, “Control strategy for single-phase UPS inverters,” IEE Proceedings Electric Power Applications, vol. 150, no. 6, pp. 743-746, 2003.
[42] M. J. Ryan and R. D. Lorenz, “A synchronous-frame controller for a single-phase sine wave inverter,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 813-819, 1997.
[43] X. Sun, M. H. L. Chow, F. H. F. Leung, D. Xu, Y. Wang and Y. S. Lee, “Analogue implementation of a neural network controller for UPS inverter applications,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 305-313, 2002.
[44] O. Kukrer and H. Komurcugil, “Deadbeat control method for single-phase UPS inverters with compensation of computation delay,” IEE Proceedings on Electric Power Applications, vol. 146, no. 1, pp. 123-128, 1999.
[45] J. M. Guerrero, L. Garcia de Vicuna, J. Miret, J. Matas and M. Castilla, “A nonlinear feed-forward control technique for single-phase UPS inverters,” IEEE Conference on Industrial Electronics Society, vol. 1, pp. 257-261, 2002.
[46] M. J. Ryan, W. E. Brumsickle and R. D. Lorenz, “Control topology options for single-phase UPS inverters,” IEEE Trans. Ind. Applicat., vol. 33, no. 2, pp. 493-501, 1997.
[47] T. Senjyu and K. Uezato, “Sinusoidal voltage controller for uninterruptible power supply by robust control,” IEEE Power Conversion Conference, pp. 200-205, 1993.
[48] K. S. Low, “A DSP-based single-phase AC power source,” IEEE Trans. Ind. Electron., vol. 46, no. 5, 1999
[49] E. G. Carati, V. F. Montagner and H. A. Grundling, “A single-phase AC power source using robust model reference adaptive control,” IEEE Conference on Industrial Electronics Society, vol. 2, pp. 1428-1432, 2000.
[50] H. van der Broeck and P. Lurkens, “Programmable AC power source,” IEE European Conference on Power Electronics and Applications, vol. 3, pp. 255-260, 1993.
[51] M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” IEEE Applied Power Electronics Conference and Exposition, vol. 3, pp. 1709-1713, 2004.
[52] E. G. Carati, C. M. Richter and H. A. Gründling, “A three-phase power source using robust model reference adaptive control,” IEEE Conference on Decision and Control, vol. 4, pp. 4078-4083, 2000.
[53] C. M. Liaw and S. J. Chiang, “Robust control of multimodule current-mode controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp.455-465, 1993.
D. Dead time compensation
[54] D. Leggate and R. J. Kerkman, “Pulse-based dead-time compensator for PWM voltage inverters,” IEEE Trans. Ind. Electron., vol. 44, pp. 191-197, 1997.
[55] S. G. Jeong and M. H. Park, “The analysis and compensation of dead-time effects in PWM inverters” IEEE Trans. Ind. Electron., vol. 38, no. 2, pp. 108-114, 1991.
[56] T. Sukegawa, K. Kamiyama, K. Mizuno, T. Matsui and T. Okuyama, “Fully digital, vector-controlled PWM VSI-fed AC drives with an inverter dead-time compensation strategy,” IEEE Trans. Ind. Applicat., vol. 27, no. 3, pp. 552-559, 1991.
[57] J. W. Choi and S. K. Sul, “New dead time compensation eliminating zero current clamping in voltage-fed PWM inverter,” IEEE Conference on Industry Applications, vol. 1, no. 3, pp. 977-984, 1994.
[58] W. C. Jong, S. I. Yong and K. S. Seung, “Inverter output voltage synthesis using novel dead time compensation,” IEEE Conference on Industry Applied Power Electronics, vol. 1, no. 3, pp. 100-106, 1994.
[59] S. O. Won, T. K. Yong and J. K. Hee, “Dead time compensation of current controlled inverter using space vector modulation method,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, no. 3, pp. 374-378, 1995.
[60] C. B. Jacobina, A. M. N. Limal and A. C. Oliveira, “Enhanced PWM voltage waveform and dead time compensation for AC drive systems,” IEEE Conference on Industrial Electronics, vol. 2, no. 3, pp. 694-697, 1997.
[61] J. Llaquet, D. Gonzalez, A. Arias, J. L.Romeral and D. Bedford, “EMI effects of hard-less dead time compensated PWM voltage inverter,” IEEE Conference on Harmonics and Quality of Power, vol. 1, no. 3, pp. 516-520, 1998.
[62] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
[63] X. Yu, M. W. Dunnigan and B. W. Williams, “Phase voltage estimation of a PWM VSI and its application to vector-controlled induction machine parameter estimation,” IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 1181-1184, 2000.
[64] A. C. Oliveira, A. M. N. Lima and C. B. Jacobina, “Varying the switching frequency to compensate the dead-time in pulse width modulated voltage source inverters,” IEEE Conference on Power Electronics, vol. 1, no. 2, pp. 244-249, 2001.
[65] C. Attaianese, D. Capraro and G. Tomasso, “A low cost digital SVM modulator with dead time compensation,” IEEE Conference on Power Electronics, vol. 1, no. 4, pp. 158-163, 2001.
[66] X. Jiang, W. Shen and X. Huang, “High performance space-vector PWM inverters using nonlinear voltage gain correction,” IEEE Conference on Electrical Machines and Systems, vol. 1, no. 3, pp. 534-537, 2001.
[67] H. S. Kim, H. W. Kim and M. J. Youn, “A new on-line dead-time compensation method based on time delay control,” IEEE Conference on Industrial Electronics, vol. 2, no. 2, pp. 1184-1189, 2001.
[68] J. L. Lin, “A new approach of dead-time compensation for PWM voltage inverters,” IEEE Trans. Circuits Syst., vol. 49, no. 4, pp. 476-483, 2002.
[69] A. C. Oliveira, C. B. Jacobina, A. M. N. Lima and E. R. C. da Silva, “Dead-time compensation in the zero-crossing current region,” IEEE Power Electronics Specialist Conference, vol. 4, no. 3, pp. 1937-1942, 2003.
[70] H. S. Kim, H. T. Moon and M. J. Youn, “On-line dead-time compensation method using disturbance observer,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1336-1345, 2003.
E. Multi-modular connection and three phase inverter
[71] F. Barzegar and S. Cuk, “A new switched-mode amplifier produces clean three-phase power,” TESLAco, Pasadena, Advances in Switched-Mode Power Conversion, vol. 3, pp. 179-193, 1983.
[72] K. Matsui, Y. Murai, M. Watanabe, M. Kaneko and F. Ueda, “A pulsewidth-modulated inverter with parallel connected transistors using current-sharing reactors,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 186-191, 1993.
[73] F. Ueda, K. Matsui, M. Asao and K. Tsuboi, “Parallel-connections of pulsewidth modulated inverters using current sharing reactors,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 673-679, 1995.
[74] F. V. P. Robinson, “The interleaved operation of power amplifiers,” IEE International Conference on Power Electronics and Variable Speed Drives, vol. 456, pp. 606-611, 1998.
[75] B. H. Li, S. S. Choi and D. M. Vilathgamuwa, “Transformerless dynamic voltage restorer,” IEE Proceedings-Generation on Transmission and Distribution, vol. 149, no. 3, pp. 263-273, 2002.
[76] A. Chibani and M. Nakaoka, “A new state-feedback control based 3 phase PWM inverter with improved parallel resonant DC link,” IEEE Industry Applications Society Conference, vol. 1, pp. 801-808, 1992.
[77] G. Yao, S. Phillips and L. Norum, “Three-phase inverters-analysis of ability to maintain symmetrical output voltages,” IEEE International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1033-1039, 1993.
[78] V. M. Cardenas, S. Horta and R. Echavarria, “Elimination of dead time effects in three phase inverters,” IEEE International Conference on Power Electronics Congress, pp. 258-262, 1996.
[79] R. Stoicescu, K. Miu, C. O. Nwankpa, D. Niebur and Xiaoguang Yang, “Three-phase converter models for unbalanced radial power-flow studies,” IEEE Trans. Power Syst., vol. 17, no. 4, pp. 1016-1021, 2002.
[80] K. Matsui, Y. Murai, M. Watanabe, M. Kaneko and F. Ueda, “A pulsewidth-modulated inverter with parallel connected transistors using current-sharing reactors,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 186-191, 1993.
[81] F. Ueda, K. Matsui, M. Asa and K. Tsuboi, “Parallel-connections of pulsewidth modulated inverters using,” IEEE Trans. Power Electron., vol. 10, no.6, pp. 673-679, 1995.
[82] F. V. P. Robinson, “The interleaved operation of power amplifiers, ”IEEE International Conference on Power Electronics and Variable Speed Drives, vol. 456, pp. 606-611, 1998.
[83] B. H. Li, S. S. Choi and D. M. Vilathgamuwa, “Transformerless dynamic voltage restorer,” IEE Proceedings-Generation on Transmission and Distribution, vol. 149, no. 3, pp. 263-273, 2002.
[84] A. Chibani and M. Nakaoka, “A new state-feedback control based three-phase PWM inverter with improved parallel resonant DC link,” IEEE Industry Applications Society Conference, vol. 1, pp. 801-808, 1992.
[85] G. Yao, S. Phillips and L. Norum, “Three-phase inverters-analysis of ability to maintain symmetrical output voltages,” IEEE International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1033-1039, 1993.
[86] V. M. Cardenas, S. Horta and R. Echavarria, “Elimination of dead time effects in three phase inverters,” IEEE International Conference on Power Electronics Congress, pp. 258-262, 1996.
[87] R. Stoicescu, K. Miu, C. O. Nwankpa, D. Niebur and Y. Xiaoguang, “Three-phase converter models for unbalanced radial power-flow studies,” IEEE Trans. Power Syst., vol. 17, no. 4, pp.1016-1021, 2002.
[88] M. Milanovic, D. Dolinar, and A. Ravnjak, “DC to Three-phase inverter based on two-phase to three-phase transformation,” IEEE Trans. Ind. Electron.,vol. 3, pp
784-788, 2002.
[89] R. J. Kakalec, “A comparison of three phase Scott-T and ferroresonant transformers,” IEEE Electrical Electronics Insulation Conference, pp. 619-623, 1995.
[90] P. Li, B. Dan, K. Yong, and C. Jian, “Research on three-phase inverter with unbalanced load,” IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 128-133, 2004.
[91] A. M. Cross, P. D. Evans and A. J. Forsyth, ”DC link current in PWM inverters with unbalanced and nonlinear loads,” IEE Proceedings on Electric Power Applications, vol. 146, pp. 620-626, 1999.
[92] P. N. Enjeti, P. D. Ziogas and J. F. Lindsay, ”Programmed PWM techniques to eliminate harmonics: a critical evaluation,” IEEE Trans. ind. Applicat., vol. 26, no. 2, pp. 302-316, 1990.
F. Commercialized AC power source
[93] “Programmable AC source specification 6463,” Chroma Ate INC.
[94] “Single and three phase AC power sources models from 500 VA to 12kVA,” Pacific INC.
[95] “Single and three phase AC power sources models from 1 kVA to 12 kVA manual or programmable control,” Pacific INC.
[96] “P series AC power source,” California Instruments INC.
[97] “LX series AC power source,” California Instruments INC.

[98] “BL1350 series AC power source,” Behlman Electronics INC.
[99] “Elgar 1203SL 3 phase 1200VA AC Power Source,” Test Equipment Corporation.
[100] “Pulse Width Modulated Power Controller,” Permedyn INC.
G . Distributed power systems and modular connection of inverters
[101] P. Karlesson and J. Svensson, “DC bus voltage control for a distributed power system,” IEEE Trans. Power Electron., vol. 18, no.6, pp. 1405-1412, 2003.
[102] G. S. Thandi, R. Zhang, K. Xing, F. C. Lee and D. Boroyevich, “Modeling control and stability analysis of a PEBB based DC DPS,” IEEE Trans. Power Delivery, vol. 14, no.2, pp. 497-505, 1999.
[103] J. S. Manguelle and A. Rufer, “Multilevel inverter for power system applications highlighting asymmetric design effects from a supply network point of view,” IEEE Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 435-440, 2003.
[104] S. Mariethoz and A. Rufer, “New configurations for the three-phase asymmetrical multilevel inverter,” IEEE Industry Applications Conference, vol. 2, pp. 828-835, 2004.
[105] R. Teodorescu, F. Blaabjerg, J. K. Pedersen, E. Cengelci and P. N. Enjeti, “Multilevel inverter by cascading industrial VSI,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 832-838, 2002.
[106] M. Hashad and J. Iwaszkiewicz, “A novel orthogonal-vectors-based topology of multilevel inverter by cascading industrial VSI,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 832-838, 2002.
[107] E. Cengelci, P. N. Enjeti and J. W. Gray, “A new modular motor-modular inverter concept for medium-voltage adjustable-speed-drive systems,” IEEE Trans. Ind. Applicat., vol. 36, no. 3, pp. 786-796, 2000.
[108] E. Cengelci, P. Enjeti, C. Singh, F. Blaabjerg and J. K. Pederson, “New medium voltage PWM inverter topologies for adjustable speed AC motor drive systems,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 565-571, 1998.
[109] C. Rech, H. A. Grundling, H. L. Hey, H. Pinheiro and J. R. Pinheiro, “A generalized design methodology for hybrid multilevel inverters,” IEEE Industrial Electronics Society Conference, vol. 1, pp. 834-839, 2002.
[110] Z. Qianzhi, Z. Kai and W. Jugui, “A novel single-three phase inverter adopting CTA scheme,” IEEE Power Electronics and Motion Control Conference, vol. 2, pp. 980-984, 2000.
[111] K. Sheldon, “Connecting multiple Sunny Boy Inverters to a three phase utility,” Technical Note, SMA American, Incorporated Copyright, rev. 1.6, 2002.
[112] S B. Kjær. “DC-AC inverter concepts for photovoltaic (PV) applications,” Aalborg, 2004.
[113] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004
[114] J. Rodríguez, J. S. Lai and F Z Peng, “Multilevel Inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top