跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家郎
研究生(外文):Chia-Lang Chang
論文名稱:利用3D動態幾何研究阿基米德與強森凸面體
論文名稱(外文):Studying Archimedean and Johnson Solids under
指導教授:全任重全任重引用關係
指導教授(外文):Jen-Chung Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:41
中文關鍵詞:利用3D動態幾何研究阿基米德與強森凸面體
外文關鍵詞:Studying Archimedean and Johnson Solids under
相關次數:
  • 被引用被引用:1
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
利用3D動態幾何研究阿基米德與強森凸面體
An interesting geometrical convex solids are actually the 13 Archimedean solids and 92 Johnson solids. The Archimedean solids are the convex polyhedra that have a similar arrangement of nonintersecting regular convex polygons of two or more different types arranged in the same way about each vertex with all sides the same length (Cromwell 1997, pp. 91-92). The Johnson solids are the convex polyhedra having regular faces and equal edge lengths (with the exception of the completely regular Platonic solids, the "semiregular" Archimedean solids, and the two infinite families of prisms and antiprisms). There are 28 simple (i.e., cannot be dissected into two other regular-faced polyhedra by a plane) regular-faced polyhedra in addition to the prisms and antiprisms (Zalgaller 1969), and Johnson (1966) proposed and Zalgaller (1969) proved that there exist exactly 92 Johnson solids in all.
This paper presents the design of Archimedean and Johnson solids under Cabri 3D Geometry , interactive dynamic software of geometry. It is divided into twelve sections. You can see the detail clearly in the website:
http://140.114.32.3/d3/johnson-solids/
Here anyone can see my achievement easily and the application of 3D dynamic geometry.
Contents
Page

I. Abstract ......................... ...1
II. Preface.............................2
III. Section 1:Introduction to Archimedean Solid ............4
IV. Section 2:Fundamental Archimedean Solids.............5
V. Section 3:Johnson Solids.....................8
VI. Section 4:Prisms........................10
VII. Section 5:Rotunda.......................14
VIII. Section 6:Cupola........................17
IX. Section 7:Pyramids.......................25
X. Section 8:Dodecahedron.....................30
XI. Section 9:Cupola-Rotunda....................32
XII. Section 10:Icosahedron.....................34
XIII. Section 11:Truncated Solids...................35
XIV. Section 12:Unable to construct solids .............. 38
XV . Reference .......................... 41
http://sylvester.math.nthu.edu.tw/d2/gc-04/
http://mathworld.wolfram.com/topics/LiveGraphics3DApplets.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top