跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 13:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉宗興
研究生(外文):Tsung-Shing Liu
論文名稱:核能電廠半導體輻射偵檢器之研究與應用
論文名稱(外文):Study and Application of Semiconductor Radiation Detectors for Nuclear Power Plant
指導教授:張廖貴術
指導教授(外文):Kuei-Shu Chang-Liao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:126
中文關鍵詞:金氧半場效電晶體電荷汲引電流輻射光電二極體太陽能電池元件界面陷阱電荷劑量率偵檢器
外文關鍵詞:MOSFETCharge Pumping CurrentRadiationPhotodiodeSolar Cell DeviceInterface Trapped ChargeDose RateDetector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:740
  • 評分評分:
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:2
  近年來因半導體電子元件之製程的快速發展,以半導體元件為輻射偵檢器亦已陸續應用在輻射監測上,由於高輻射強度之輻射偵檢器價格是非常昂貴,且依賴國外進口;因此,本研究目的係找尋現成之商用半導體元件,研究各種元件電氣特性,開發為低廉之輻射偵檢器,並可應用在國內核能電廠運轉時之事故級高輻射強度之監測。

  本論文可分為三部分說明,第一種研究為我們成功的研究及找尋到商用功率金氧半場效電晶體(MOSFET),利用其閘極氧化層與輻射作用效應產生陷阱電荷,量測界面電荷汲引電流(Interface Charge Pumping Current)之變化量,經驗證可當為高輻射劑量計,同時在高溫環境使用,亦不會隨時間而弱化消失(Fading Effect)。

  第二種研究為脈衝式輻射量測,一般半導體輻射偵檢器,如PIN Photodiode是以其P-I-N結構經輻射作用產生電子電洞對,再經由電荷放大器形成可計測之脈衝,而我們利用功率金氧半場效電晶體之元件物理特性為偵檢器,以其源極到汲極之雙重擴散(Double Diffusion)半導體結構,存有n+/ p+/ n-/ n+共生元件(Parasitic device),類同P-I-N結構,在高強度輻射的量測研究,證明比PIN光電二極體元件更適用在高強度輻射的監測。

  第三種研究為電流式輻射量測,並成功的找尋到太陽能電池元件(Solar Cell Device)為偵檢器,利用其PN二極體接面受輻射照射之效應,電子電洞對可直接跨越能帶障礙,於高強度輻射照射下,單位時間跨越能帶的電子電洞對多到足夠產生可計測之電流,測試之結果約可達5~8E-11 A/(rad /hr),且電流/輻射劑量率之對數讀值的反應線性度良好。我們亦研製電流放大器,結合成輻射監測器,經實際照射校驗測試,更驗證可應用在核能電廠運轉時之事故級高輻射強度之監測。
Recently, the semiconductor devices processing has been rapidly developed. The detectors using semiconductor devices have been used for radiation monitors. The radiation detector for high dose range is very expensive and needs export from abroad. Consequently, the purposes of this thesis are to find the radiation detectors using the commercial semiconductor devices and study electric characteristics of those devices. This article focuses on applications of the high range radiation monitoring during accident of nuclear power plant. Therefore, electric characteristics of the semiconductor devices were studied through the experiments for achieving cheaper radiation detectors and monitors.

This dissertation comprises three studies. It is successfully found in the first study that the Power Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) devices can be used for the high range dosimeters. Due to the interface trap charges increased by radiation interaction, we can measure the change of pumping current in corresponding with interface charges induced by radiation exposure dose. We also find that the Power MOSFETs are suitable to be used in a high temperature and high radiation dose environment of the Nuclear Power Plant.

The second study is radiation measurement of pulse mode operation. Normally, PIN photodiode is used to be a pulse mode radiation detector by means of charges generation in its P-I-N structure under radiation interaction. We find that the Power MOSFET device exists a parasitic n+/ p+/ n-/ n+ device from the source to the drain, which is similar to the P-I-N structure. To be used in high radiation dose environment, we find that the Power MOSFET devices have more advantage than the PIN photodiodes.

The third study is radiation measurement of current mode operation. It is successfully found that the Solar Cell devices can be used for the high range radiation measurement. As the PN junction of the device is exposed by radiation, the electron-hole pairs are generated by energy deposited from gamma-rays and they are easy to escape from energy band. Thus, a large amount of electron-hole pairs generated by high radiation can produce a measurable current. The experimental result of current to exposure dose rate is 5~8E-11 A/(rad/hr) approximately. We also develop a current amplifier to build a radiation monitor. The radiation measurement calibration has been performed on the monitor, which was proved to have a very good linearity in logarithm scale. Hence, Solar Cell detector and monitor can be used for the high range radiation measurement during accident of nuclear power plant.
目 錄
中文摘要 ............................................................................................................. I
英文摘要 ............................................................................................................ II
目錄 .................................................................................................................... V
圖目錄................................................................................................................. VII
第一章 緒論.......................................................................................................... 1
 1.1 緒言............................................................................................................. 1
 1.2 研究概要..................................................................................................... 1
第二章 MOSFET半導體元件在高輻射監測之應用研究................................... 4
 2.1 金氧半導體元件與輻射效應.................................................................. 4
 2.2 傳統MOSFET應用在加馬輻射劑量計之量測........................................ 6
  2.2.1 MOSFET應用在加馬輻射劑量計之文獻回顧................................. 6
  2.2.2 MOSFET應用之實驗及方法............................................................. 8
 2.3 MOSFET以電荷汲引參數作為加馬輻射劑量計之量測研究................... 9
  2.3.1 研究之動機........................................................................................... 9
  2.3.2 電荷汲引的原理及量測方法.............................................................. 11
  2.3.3 電荷汲引電流的實際量測.................................................................. 13
 2.4 Power MOSFET電荷汲引參數作為加馬輻射劑量計之量測實驗............ 14
  2.4.1 低強度之加馬輻射照射與電荷汲引電流的實際量測...................... 14
  2.4.2 中強度之加馬輻射照射與電荷汲引電流的實際量測...................... 17
  2.4.3 高強度之加馬輻射照射與電荷汲引電流的實際量測...................... 19
 2.5 Power MOSFET元件輻射劑量計之界面汲引電荷消失量測實驗研究.... 20
 2.6 Power MOSFET元件受加馬輻射照射介面陷阱電荷密度變化之研究.... 21
 2.7 Power MOSFET在台電核能二廠乾井區測試研究.................................... 22
 2.8 結論.......................................................................................................... 23
第三章 Pulse Mode半導體輻射偵檢器在高輻射監測之應用研究.................... 49
 3.1 傳統及新式區域輻射監測系統偵測器元件之比較.............................. 49
 3.2 PIN矽光電二極體為輻射偵測器元件之原理........................................ 51
 3.3 PIN矽光電二極體元件之尋找及特性測試............................................ 52
 3.4 以PIN矽光電二極體為偵測器之輻射照射實驗.................................... 53
  3.4.1 實驗設計及儀器設置....................................................................... 53
  3.4.2 PULSE MODE加馬輻射照射實驗一............................................... 53
  3.4.3 PULSE MODE加馬輻射照射實驗二............................................... 54
 3.5 以Power MOSFET元件為輻射偵測器之實驗........................................ 55
  3.5.1 以Power MOSFET為輻射偵測器元件之原理................................. 56
  3.5.2 Power MOSFET為PULSE MODE輻射偵測之實驗一...................... 57
  3.5.3 Power MOSFET為PULSE MODE輻射偵測之實驗二...................... 59
 3.6 脈衝模式Dead Time對加馬輻射計測之影響......................................... 61
 3.7 結論.......................................................................................................... 63
第四章 矽Solar Cell元件加馬輻射偵檢器在高輻射監測之應用研究............... 83
 4.1 矽太陽能電池板元件作為輻射偵測器之原理...................................... 83
 4.2 Solar Cell Device之尋找及特性研究........................................................ 85
 4.3 Solar Cell Device偵測器之輻射照射實驗................................................ 86
  4.3.1 實驗設計及儀器設置....................................................................... 86
  4.3.2 Current Mode加馬輻射照射實驗一(Preliminary Test)....................... 86
  4.3.3 Current Mode加馬輻射照射實驗二.................................................. 88
  4.3.4 Current Mode加馬輻射照射實驗三.................................................. 89
 4.4 Solar Cell Device偵檢器之組裝及應用測試........................................... 92
 4.5 Solar Cell偵檢器及監測器之整體設計及測試...................................... 92
  4.5.1 Solar Cell Detector作為事故級輻射偵檢器之設計.......................... 93
  4.5.2 奈安(nA)電流放大電路之研究....................................................... 93
  4.5.3 Solar Cell Detector事故級輻射監測器組裝及功能測試.................. 95
  4.5.4 Solar Cell Detector事故級輻射監測器之輻射照射測試一.............. 95
  4.5.5 Solar Cell Detector事故級輻射監測器之輻射照射測試二.............. 96
 4.6 結論......................................................................................................... 98
第五章 結論與建議........................................................................................... 120
 5.1 結論........................................................................................................ 120
 5.2 建議及未來的工作................................................................................ 122
參考文獻............................................................................................................. 124

圖 目 錄
圖2-1 SiO2在製程完成後之結構及電荷分佈圖......25
圖2-2 MOS半導體元件之Energy Band Diagram......25
圖2-3 MOS半導體元件受輻射效應影響之Energy Band變化圖......26
圖2-4 (a)以未加偏電壓之MOSFET, (b)以加偏電壓之MOSFET, (c)以加偏電壓之CD4007邏輯IC受輻射照射之示意圖......27
圖2-5 在低劑量150 mrad/hr;γ-ray照射後,量測Vg-Id之設備及配置圖......28
圖2-6 CD4007 p-MOSFET在不同累計照射劑量下,Vg-Id之特性變化圖......29
圖2-7 CD4007 n-MOSFET在不同累計照射劑量下,Vg-Id之特性變化圖......30
圖2-8 Power p-channel MOSFET IRFD9120剖面圖......31
圖2-9 n-channel Power MOSFET之Charge Pumping Current ICP量測方法......32
圖2-10 商用Power n-channel MOSFET IRFD120之Charge Pumping Current ICP量測儀器設置及量測方法示意圖......33
圖2-11 量測汲極電流ICP變化圖與IEEE期刊比較圖......34
圖2-12 將商用IRFD9120及IRFD9130元件置在台電核能二廠乾井區,靠近事故級輻射偵測器量測點,進行輻射照射實驗示意圖......34
圖2-13 經輻射照射實驗,量測汲極電流ICP變化圖,與IEEE期刊比較圖............. 35
圖2-14 在閘極不加偏電壓VGS=0 V,以Co-60強度為150 mrad/hr之γ-ray照射n-MOSFET IRFD120,各種照射劑量下ICP與VGL之特性反應圖......36
圖2-15 在閘極不加偏電壓,以Co-60強度為150 mrad/hr之γ-ray照射n-MOSFET IRFD120,總輻射照射劑量與ICP之特性反應圖......36
圖2-16 在閘極加入偏電壓VGS=9 V,以Co-60強度為150 mrad/hr之γ-ray照射n-MOSFET IRFD120,各種照射劑量下ICP與VGL之特性反應圖......37
圖2-17 在閘極加入偏電壓VGS=9 V,以Co-60強度為150 mrad/hr之γ-ray照射n-MOSFET IRFD120,總輻射照射劑量與ICP之特性反應圖......37
圖2-18 在n-MOSFET IRFD120在閘極偏電壓VGS=0 V及VGS=9 V,以強度為150 mrad/hr之γ-ray照射,兩者在照射劑量與ICP之比較圖......38
圖2-19 在閘極偏電壓VGS=9 V,以低強度150 mrad/hr之γ-ray照射p-MOSFET IRFD9120,總輻射照射劑量ICP與VGL之特性反應圖......39
圖2-20 在閘極偏電壓VGS=9 V,以低強度150 mrad/hr之γ-ray照射p-MOSFET IRFD9120,累積之輻射照射劑量與ICP之特性反應圖......39
圖2-21 以中強度1000 mrad/hr之γ-ray照射n-MOSFET IRFD120,不同輻射照射劑量下ICP與VGL特性反應圖......40
圖2-22 以中強度1000 mrad/hr之γ-ray照射n-MOSFET IRFD120,累積之輻射照射劑量與ICP之特性反應圖......40
圖2-23 以中強度1000 mrad/hr之γ-ray照射p-MOSFET IRFD9120,不同輻射照射劑量下ICP與VGL特性反應圖......41
圖2-24 以中強度1000 mrad/hr之γ-ray照射p-MOSFET IRFD9120,累積之輻射照射劑量與ICP之特性反應圖......41
圖2-25 以29000 Ci強度Co-60射源照射n-MOSFET IRFD120元件,各種照射劑量下,其介層陷阱電荷汲取電流ICP與VGL之特性反應圖......42
圖2-26 n-MOSFET IRFD120元件在不同輻射照射累計劑量下,其介層陷阱電荷汲取電流ICP與VGL之特性反應圖......42
圖2-27 以29000 Ci強度Co-60射源照射p-MOSFET IRFD9120元件,各種照射劑量下,其介層陷阱電荷汲取電流ICP與VGL之特性反應圖.......43
圖2-28 p-MOSFET IRFD9120元件在不同輻射照射累計劑量下,其介層陷阱電荷汲取電流ICP與VGL之特性反應圖......43
圖2-29 n-MOSFET IRFD120元件在不同時間照射後,驗證ICP 之 Fading 反應,證明其ICPmax值及特性曲線均未減低及變化圖......44
圖2-30 p-MOSFET IRFD9120元件在照射劑量為700 rad後,測試Charge Pumping Current在經不同時間後Fading Test之反應圖......44
圖2-31(a) 同一種n-MOSFET以在閘電極未加電壓及加入電壓,接受150 mrad/hr輻射照射之介面陷阱電荷密度之變化圖......45
圖2-31(b) 以n-MOSFET及p-MOSFET,在閘電極加入電壓,接受150 mrad/hr輻射照射之介面陷阱電荷密度之變化圖......45
圖2-32 將n-MOSFET及p-MOSFET在閘電極未加電壓,以1000 mrad/hr輻射照射下,元件之介面陷阱電荷密度之變化圖......46
圖2-33 將n-MOSFET及p-MOSFET在閘電極未加電壓,以各種不同強度之輻射照射,元件之介面陷阱電荷密度之變化圖......46
圖2-34. Power MOSFET輻射劑量計置放在台電核能二廠乾井區測試圖......47
圖2-35. 經210天之輻射照射後, ICP與VGL之特性反應圖......47
圖2-36. 經210天之乾井區照射MOSFET元件及溫度照片......48
圖2-37. 綜合及比較經210天照射之ICP與VGL特性反應圖......48
圖3-1 P-I-N Photodiode之結構圖......64
圖3-2 PIN Photodiode規格:台灣聯宇電子公司製造:LPD913K及LPD923K......64
圖3-3 量測P-I-N Photodiode之Capacitance-Voltage特性圖......65
圖3-4 PIN Photodiode之Depletion Width對Reverse Bias Voltage特性圖......65
圖3-5 PIN Photodiode之輻射照射實驗,量測儀器設置圖......66
圖3-6(a) 以較弱之Co-60 γ-ray射源照射,可測得脈波波形圖......67
圖3-6 (b) PIN Photodiode Pulse Counting Rate與輻射照射強度之特性反應圖......67
圖3-7. 兩只PIN Photodiode元件經射源照射,計數率與照射強度特性反應圖......68
圖3-8(a) Power MOSFET IRFD120之技術資料......69
圖3-8(b) PIN Photodiode與Power MOSFET之體積大小比對,封裝在BNC Coaxial Cable Connector為Detector之照片......69
圖3-9(a) Power MOSFET IRFD9130實體結構圖放大照片......70
圖3-9 (b) Power MOSFET IRFD9130實體放大照片結構圖(HEXFET)......70
圖3-10 Power MOSFET IRFD9130剖面結構示意圖......71
圖3-11 量測Power MOSFET之Capacitance-Voltage特性圖......71
圖3-12 Power MOSFET之Depletion Width對Reverse Bias Voltage特性圖......72
圖3-13受γ-ray輻射照射之Power MOSFET之結構示意圖......73
圖3-14 台電放射試驗室Cs-137 γ-ray射源,雷射測距定位之照片......74
圖3-15 將Power MOSFET封裝為Detector,配合Charge Amplifier電路,於台電公司放射試驗室射源照射之照片......74
圖3-16 n-MOSFET元件為Detector,受低強度γ-ray輻射(~10 rad/hr)照射後,產生之電荷經Charge Amplifier電路放大所產生脈波之波形圖......75
圖3-17 n-MOSFET元件為Detector,受低強度γ-ray輻射(~ 300 rad/hr)照射後,產生之電荷經Charge Amplifier電路放大所產生脈波之波形圖......75
圖3-18(a),(b) 以MOSFET-1&2為偵檢器,在台電放射實驗室由Cs-137 γ-ray射源照射,Pulse Counting Rate與輻射照射強度之特性反應圖......76
圖3-19 以清大同位素組Co-60輻射照射MOSFET、n-MOSFET Detector、Solar Cell Detector,輻射照射量測儀器設置規畫圖......77
圖3-20 清大同位素組Co-60輻射照射MOSFET、n-MOSFET Detector、Solar Cell Detector及儀器設置之照片圖......78
圖3-21 n-MOSFET Detector受高強度γ-ray輻射照射後,在各種輻射強度下,產生之電荷經Charge Amplifier電路放大所產生脈波之波形圖......79
圖3-22 清大同位素組Co-60照射n-MOSFET Detector之Counting Rate反應圖,並模擬事故強度之長時間耐久照射實驗......80
圖3-23 n-MOSFET Detector照射反應及Dead Time推算圖......80
圖3-24 PIN Photodiode輻射照射強度之特性反應及模擬計算圖......81
圖3-25 n-MOSFET Detector輻射照射強度之特性反應及模擬計算圖......81
圖3-26 台電核能二廠事故級Ion Chamber輻射偵檢器測試反應圖......82
圖4-1 矽基Solar Cell Device之基本構造圖......99
圖4-2 Solar Cell Device之Energy Band圖......100
圖4-3 Solar Cell Device之剖面結構圖......100
圖4-4 Solar Cell Device規格:Panasonic公司製造,型號BP-5313C4......101
圖4-5 Solar Cell Device規格:台灣光華開發科技股份有限公司製造,型號為SINONAR SC-9728及SM-5626......102
圖4-6 Solar Cell Device之輻射照射量測儀器設置圖......103
圖4-7. 在台電核能二廠使用Ir-192 γ-ray射源做Preliminary Test照射圖...104
圖4-8 Ir-192 γ-ray射源Preliminary Test之感應電流反應圖......105
圖4-9 Solar Cell所感應之電流圖:照射強度與電流之對數讀值關係為線性......105
圖4-10 SC-1(PANASONIC BP-5313C4)照射強度與感應電流之特性反應圖......106
圖4-11 SC-2(SINONAR SM-5626 )照射強度與感應電流之特性反應圖......107
圖4-12 SC-1產生之電流與輻射照射強度之特性反應圖......107
圖4-13 清大同位素組Co-60照射SC-1 (PANASONIC BP-5313C4)之反應圖......108
圖4-14 清大同位素組Co-60照射SC-3(SINONAR SC-9728 )之反應圖......108
圖4-15 SC-1/SC-3元件在事故級輻射量測之輻射╱感應電流效率比較圖......109
圖4-16 將Sloar Cell No.1(Panasonsic BP-5313C4)加馬輻射照射實驗一、二及三之數據整合產生之電流與輻射照射強度之特性反應圖......109
圖4-17 Solar Cell Device在台電核能二廠之輻射照射量測儀器設置圖......110
圖4-18 Solar Cell偵檢器在台電核能二廠運轉機組測試,功率與電流變化圖........111
圖4-19 Solar Cell偵檢器在台電核能二廠運轉機組測試,溫度與電流變化圖........111
圖4-20 Solar Cell Detector and Monitor電路設計圖......112
圖4-21(a) 以OrCAD Capture分析所設計之電路圖......113
圖4-21(b) Solar Cell Detector and Monitor電流放大電路設計分析圖......113
圖4-22電路經實際應用在Charge Pumping分析測試之比較圖......114
圖4-23 Solar Cell Detector and Monitor初步組成照片圖......114
圖4-24 Solar Cell Detector and Monitor以Cs-137射源照射圖......115
圖4-25 Solar Cell Detector and Monitor以射源Cs-137照射之輻射指示及電流反應圖(25~500 R/hr )......116
圖4-26 Solar Cell Detector & Monitor在清大同位素組以Co-60射源照射圖......117
圖4-27 SC2A Detector & Monitor射源Co-60照射之輻射指示及電流反應圖......118
圖4-28 SC2B Detector & Monitor射源Co-60照射之輻射指示及電流反應圖......119
參 考 文 獻
References :
[ 1 ] Dieter K. Schroder., "Semiconductor material and device characterization", New York :/Wiley,/c. pp.379-386. 1998.
[ 2 ] S.M. Sze, "Semiconductor devices: physics and technology, 2nd Ed. ", John Wiley, pp.218-220, pp.313-325, 2002.
[ 3 ] Glenn F. Knoll, "Radiation Detection and measurement 3rd ed. ", John Wiley & Sons, Inc. ch.11, pp.399, pp.751-752, 1999.
[ 4 ] T. P. Ma, Paul V. Dressendorfer, “Ionizing radiation effects in MOS devices and circuits”, New York :/Wiley,/c., pp.3-35, 1989.
[ 5 ] 吳泰良, "金氧半場效電晶體之加馬射線劑量計研究", 清華大學核子工程系碩士論文, pp.9-29, 1995.
[ 6 ] 鄭禮賢, "Effects of Forming Gas Annealing on the Recovery of Radiation Damaged Power MOSFETs", 國立交通大學電子工程系碩士論文, pp.7-20, 2003.
[ 7 ] 馮光賢, "太空電子元件抗輻射評估與退火處理之研究", 清華大學核子工程系碩士論文, pp.8-19, 1995.
[ 8 ] 清大工科系張廖貴術,王天戈教授, “核能電廠事故爐心損毀評估與輻射偵測技術研究第三部分:核能電廠事故高輻射劑量計與抗輻射電子元件製作研究”, 台灣電力股份有限公司委託研究計畫, 2002-2004.
[ 9 ] 盧俊源, "金氧半電晶體氧化層電荷與界面陷阱量測研究", 清華大學工程與系統科學系碩士論文, pp.35-46, 2001.
[ 10 ] Prevost, G.; Augier, P.; Palau, J.-M., “The use of charge-pumping for characterizing irradiated power MOSFETs”, IEEE Transactions on Nuclear Science, Vol. 43, No.3, pp.858 - 864, June 1996.
[ 11 ] Heremans, P.; Witters, J.; Groeseneken, G.; Maes, H.E., “Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation”, IEEE Transactions on Electron Devices, Vol.36, No.7, pp.1318-1335, July 1989.
[ 12 ] R. B. Klein, N. S. Saka and Z. Shanfield, “SATURATION OF RAIDATION-INDUCED THRESHOLD-VOLTAGE SHIFTS IN THIN-OXIDE MOSFETs AT 80 K”, IEEE Transactions on Nuclear Science, Vol. 37, No.6, pp.26-34, December 1990.
[ 13 ] B. Djezzar, A. Smatti, A. Amrouche and M. Kechouance, “Channel-Length Impact on Radiation-Induced Threshold-Voltage shift in N-MOSFET’s Devices Low Gamma Rays Radiation Doses”, IEEE Transactions on Nuclear Science, Vol. 47, No.6, pp.1872-1878, December 2000.
[ 14 ] Sharp, R.E.; Pater, S.L., “The influence of dose rate on total dose radiation effects on MOSFETs”, Radiation and Its Effects on Components and Systems, 2001. 6th European Conference, pp.488-493, Sept. 2001.
[ 15 ] G. Sarrabayrouse and S. Siskos, “Radiation Dose Measurement using MOSFETs”, IEEE Instrumrentation & Measurement Magazine, pp.26-34, June 1998.
[ 16 ] W. E. Johnson, “Area and Process Radiation Monitoring System Guide”, Nuclear Maintenance Applications Center (NMAC), EPRI Revision 2 of TR-104862, pp.2.1-2.31,August 2003.
[ 17 ] Kyomasu, M.; Nakamura, H.; Suzuki, T.; Kato, K.; Sahara, M., “Integrated high speed silicon PIN photodiode sensor”, Solid-State Sensors and Actuators, 1991. Digest of Technical Papers, '91. International Conference on TRANSDUCERS, 24-27, pp.289-292, June 1991.
[ 18 ] A C Chang and W D Hill, “An Area Radiation Monitoring System for Nuclear Plants Using PIN Photodiodes”, Nuclear Science Symposium and Medical Imaging Conference Record, 1995., IEEE Volume 2, 21-28, pp.923-925, Oct. 1995.
[ 19 ] Sueki Baba, Hiroshi Tsutsui, Kouichi Ohmori, Tetsuro Ohtsuchi, Hideo Toyoda, Hiromasa Funakoshi, and Toshiyuki Kawara, “A High Speed Cadmium Telluride Radiation Detector”, IEEE Transactions on Nuclear Science, Vol. 40, No. 1, pp. 56-62, February 1993.
[ 20 ] Hsun-Hua Tseng, Jinn-Yih Wu, and Hwei-Fu Chang, “Study of Si Dectector for Accident Monitoring Applications”, Institute of Nuclear Energy Research, Lung-Tan, Taiwan, ROC. 1996.
[ 21 ] Chen, C.R.; Jiang, S.H.; Tseng, H.H.; Chang, H.F., “Energy response and filter compensation of PIN Si photodiode for personal dosimetry application”, Nuclear Science Symposium and Medical Imaging Conference, IEEE, 25-31, Vol.1, pp.70-72, Oct. 1992.
[ 22 ] 盧勤庸, “電子電路模擬 Pspice A/D”, 全華科技圖書公司, ch.3,4,5, 2001.
[ 23 ] 映陽科技訓練教材, “OrCAD Capture/ Pspice for Windows”, 映陽科技股份有限公司, pp.1-52, 2002.
[ 24 ] Fredrick W. Hughes, “Op Amp Handbook”, Prentice-Hall Inc., New Jersey, pp.219-221, 1981.
[ 25 ] Kuei-Shu CHANG-LIAO and Tai-Liang WU, “Radiation Dosimeters for High Dose by Commercial PMOS Transistors Using Normalized Drain Current as Dosimetric Parameter”, Journal of Nuclear Science and Technology, Vol. 34, No. 10, pp.992-995, October 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top