跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瑛
研究生(外文):Ying Chern
論文名稱:國小六年級學童分數乘法之電腦補救教學個案研究
論文名稱(外文):The Case Study of Computer-based Remedial Instruction for Sixth Graders on Fraction Multiplication
指導教授:謝哲仁謝哲仁引用關係
指導教授(外文):Che-Jen Hsieh
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:數學教育學系碩士班
學門:教育學門
學類:教育行政學類
論文種類:學術論文
畢業學年度:93
語文別:中文
論文頁數:120
中文關鍵詞:分數乘法個案研究多重表徵電腦補救教學
外文關鍵詞:case studycomputer remedial instructionfraction multiplicationmultiple representations
相關次數:
  • 被引用被引用:16
  • 點閱點閱:580
  • 評分評分:
  • 下載下載:165
  • 收藏至我的研究室書目清單書目收藏:15
本研究是屬於「個案研究」,其主要研究目的是在探討三位國小六年級數學科低成就學童,透過Excel電腦輔助軟體設計,進行「分數乘法」的補救教學活動,觀察學童在活動之後,對「分數乘法」概念的改變情形,以便進一步的瞭解並分析在補救教學的實施過程中,「多重表徵」與學童學習的影響,作為其他教師教學的參考。
研究對象是研究者所服務的高雄市某國小六年級學童,根據研究者設計的「多重表徵」教學模式電腦視覺化表徵視窗環境進行補救教學,資料的搜集則採用學童在實施補救教學前和教學後的成就測驗、半結構式訪談與學習日誌等,資料的整理與分析則採行質量並重。依資料分析所得的研究結果有下面幾點:
一. 學童在接受Excel電腦視覺化表徵視窗環境進行補救教學後,建立了「分數乘法」的概念。這些概念包括有:
1. 學童學會五大類型題目的解題策略,並找出符號計算的規則。
2. 學童學會掌握三個不同層次的單位關係。
3. 學童學會建立單位分數的概念,及對單位量的認識。
4. 學童學會分割及再分割的操作技巧。
二. 學童在接受Excel電腦視覺化表徵視窗環境進行補救教學後,學童在運思發展上獲得提升。
三. 學童在接受Excel電腦視覺化表徵視窗環境進行補救教學後,「多重表徵」對學童學習的影響。這些影響包括有:
1. 學童學會不同表徵間的轉譯。
2. 學童能理解表徵內部的轉換。
3. 學童能藉由各種表徵提供的線索進行解題。
四. 學童在接受Excel電腦視覺化表徵視窗環境進行補救教學後,學童在學習態度上不僅有所改變,且也是他們對數學科的學習產生了興趣。
五. 研究者發覺在Excel電腦視覺化表徵視窗環境下,這個電腦軟體在學童學習上具有一些特性,有助於學童的學習。這些特性包括有:
1. 電腦輔助補救教學軟體可以將學習表徵系統保留下操作的軌跡及歷程。
2. 學童可任意變更題目數字,經由反覆練習,讓學童自行察覺到計算的規則。
3. 當學童輸入錯誤時,可以多次嘗試直到答案正確。
Based on three sixth-grader subjects who did not do well in mathematics at school, the purpose of this research is to investigate how the students improve their performance in fraction multiplication after receiving Excel-based remedial instruction. Also, the researcher seeks to further understanding and analyze how the multiple representations materials influence students’ learning and to provide reference for other teachers.

The subjects in the study are from the Kaohsiung elementary school where the researcher is serving. The cases received the remedial instruction with the “multiple representations” teaching mode under visualized computer setting. The data adopted in this study including students’ scores in tests before and after they received the remedial instruction, semi-structured interviews, and study journals. The analysis of the data focuses both quality and quantity. The results of the research can be concluded as follows:

I. After receiving the Excel-based remedial instruction under visualized window setting, the students are proved to have better understanding of fraction multiplication:
1.They have learned how to solve the five major math subjects and the rules of symbolic calculation related the multiplication of fraction.
2.They have learned the unit relation among the three different levels of the multiplication of fraction.
3.They have become familiar with the concept of unit fractions and unit quantity.
4.They have learned the skill of partition.

II. After receiving the Excel-based remedial instruction under visualized window setting, the students have improved their logical thinking.

III. After receiving the Excel-based supplementary education under visualized window setting, related to the multiple representations topics has the following effects on students:
1.They have learned to translate among different representations.
2.They can understand the inner transformation of the representations.
3.They have learned to solve problems by looking for clues in the representations.

IV. After receiving the Excel-based remedial instruction under visualized window setting, they have changed their attitude toward studying and showed more interest in mathematics.

V. The Excel-based remedial instruction under visualized window setting has certain characteristics that can help students to learn:
1.The computer-based supplementary education can record and keep the process of a student’s learning and operation on the representations system.
2.Students can change the numerals given in the questions and do repeated exercises to find out the rules of calculation on their own.
3.When the students put in a wrong answer, the system will allow them to try as many times as possible before they get the right answer.
中文摘要················································Ⅰ
英文摘要················································Ⅱ
誌 謝··················································Ⅳ
目 次··················································Ⅴ
表 次··················································Ⅶ
圖 次··················································Ⅷ
第一章 緒論············································1
第一節 研究動機········································1
第二節 研究目的········································3
第三節 待答問題········································3
第四節 名詞釋義········································3
第五節 研究的範圍與限制································5
第二章 文獻探討········································6
第一節 分數乘法的相關文獻······························6
第二節 分數的多重表徵··································11
第三節 電腦輔助教學的理論······························15
第三章 研究方法········································19
第一節 個案研究之理由··································19
第二節 研究架構········································19
第三節 研究設計········································20
第四節 研究對象········································22
第五節 研究工具········································23
第六節 實施程序········································28
第七節 資料處理········································29
第四章 研究結果與討論··································31
第一節 在動態視覺補救教學前的評量結果及錯誤類型········31
第二節 在動態視覺補救教學情境中呈現的學習情形··········42
第三節 在動態視覺補救教學後的概念及解題表現···········102
第五章 結論與建議 ····································110
第一節 結論···········································110
第二節 建議···········································113
參考書目···············································115
附錄一·················································118
附錄二·················································120
一、中文部分:
吳相儒(2001)。運用國小數學科「分數」教學模組實施診斷與補救教學之研究-以四年級學童為例。國立嘉義大學國民教育研究所碩士論文。
邱兆偉(1995))。「質的研究」的訴求與設計。教育研究,4,1–28頁。
林炎全(2000)。從數學本質的蛻變論數學課程的成長。中等教育學報,7期,67–75頁。
林彥宏、謝哲仁(2002)。國小五年級學童分數概念的診斷與補救教學。台南:台南師院教師在職進修數學碩士班碩士論文。
林碧珍(1990)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報。第四期,295-347頁。
林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,27期,35–62頁。
徐新逸(1996)。情境學習在數學教育上之應用。教學科技與媒體,29期,13-22頁。
國立編譯館(2001)。數學教學指引,第九、十、十一、十二冊。台北:台灣書店。
教育部(2000)。國中小學九年一貫課程暫行綱要數學學習領域。台北:教育部。
教育部(2001)。分數的數概念與運算。教育部台灣省國民學校教師研究會。
康軒出版社(2000)。國小數學教學指引,第九、十、十一、十二冊。台北:康軒出版社。
郭重吉(1995)。建構主義與數理科的學習輔導,學生輔導,38期,32–39頁。
曾振家,謝哲仁(2002)。多重表徵情境學習分數加法概念之設計。教學科技與媒體,60,94–102頁。
趙金婷、鄭晉昌(1999)。虛擬實境學習環境的設計與評量。教學科技與媒體,47,2–11頁。
張春興,林清山(1983)。教育心理學。台北:東華。
張靜嚳(1999)。國中低學習成就班的雙環數學教學。科學教育學刊,7(3),199~216頁。
曾振家、謝哲仁(2002)。多重表徵情境學習分數加法概念之設計。教學科技與媒體,60,94-102。
黃瑞琴(1999)。質的教育研究方法。台北:心理。
劉秋木(1996)。國小數學科教學研究。台北:五南。
蔣治邦(1994)。由表徵觀點探討實驗教材數與計算活動的設計。國立嘉義師院八十二學年度數學教育研討會論文暨會議實錄彙編。
鄭晉昌(1997)。視覺思考及科學概念的獲取-設計與發展電腦輔助視覺學習環境,教學科技與媒體,33期,20-27頁。
翰林數學教學指引(2000)。國小數學教學指引,第六、七、八、九、十、十一、十二冊。台北,翰林出版社。
謝哲仁(2000)。電子試算表在高中數學教學之可行性研究,美和技術學院學報,
18,118-128。
謝哲仁(2001)。動態電腦幾何教學建構之研究,美和技術學院學報,19期,199-211。
謝哲仁(2002)。應用函數基本運算設計可操作動態視覺化的函數學習環境,數學天地,第七期。
羅素貞(2002)。國小學童分數乘法問題之解題研究。國立政治大學教育研究所博士論文。

二、英文部分:
Ausubel,1968, Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.
Brouner, J.(1983) .Child''s talk﹕Learning to use language. New York﹕W.W.Norton. Byrne, C. M.(1996).Water on tap﹕The use of virtual reality as an educational tool. Unpublished Ph. D.Dissertation, University of Washington, College of Engineering.
Dufour-Janvier et al.,1987,Pedagogical considerations concerning of the problem of representation in the teaching and learning mathematics,pp.109-122. Hillsdale, NJ:Lawrence Erlbaum Associates.
Ebel,1979, Essentials of Educational Measurement.(3 rd ed.)Englewood Cliffs, N. J.:Prentice Hall。
Hardiman & Mestre,1989, Understanding multiplicative Contexts involving fractions. Journal of Educational Psychology, 81, 4, 547-557.
Hiebert & Lefevre,1986,Conceputal and procedural knowledge in mathematics: An Introductory Analysis. In Conceptual and procedural Knowledge: The Case for Mathematics, edited by James Hiebert. Hillsdale, NJ: Lawrence Erlbaum Associates, Publisher.
Janvier,1987c,Problems of representation in the teaching and learning of fractions. Journal Research of Mathematics Education 339-348.
Kaput,1992,Technology and mathematics education. In D.A. Grouws(Ed.). Handbook of Teaching and Learning Mathematics.(pp.515-556) New York:Macmillan.
Karmiloff-Smith,1990,Constraints on representational change: Evidence fron children’s drawing. Cognition,34(1),57-83.
Lesh,1979,Some trends in research and the acquisition and the use of space and geomethy concepts,critical reviews in mathematics education, materialen and studien,Band 9,Institute fur didactike der mathermatik der universitat bielefel 1979.
Lesh et al,1983,Conceptual models in applied mathematical problem solving. In R. Lesh & M. Landau (eds). Acquisition of mathematics concepts and processes. Pp.263-343. New York: Academic Press.
Linquist et al.,1983, The National Assessment of education Progress,
M.Bell,1996, Web for your head: The design of digital resources to enhance lifelong learning. D-Lib Magazine.
Mayer,1992,Employment-related key competencies: A Proposal for consultation. Canberra, Australia: Ministry of Education and Training.
Nation Council of Teachers of Mathematics,NCTM,1989,Curriculum and Evaluation Standards for School Mathematics. Reston,VA:NCTM.
Ning,1992,Children’s meanings of fractional number words. Unpublished doctoral dissertation. The University of Georgia,Athens,GA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top