跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁家源
研究生(外文):Liang Jian-Yuan
論文名稱:氧+甲醇及氧+甲基聯胺反應動力學QuantumChemistry/RRKM計算
論文名稱(外文):Quantum Chemistry/RRKM Calculation of O(1D)+CH3OH and O(1D)+CH3NHNH2 Reactions
指導教授:孫英傑孫英傑引用關係
指導教授(外文):Ying-Chieh Sun
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:114
中文關鍵詞:RRKM氧+甲醇氧+甲基聯胺反應動力學
外文關鍵詞:Quantum ChemistryRRKMCH3OHCH3NHNH2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

我們利用quantum chemistry/RRKM理論方法研究O(1D)與甲醇及甲基聯胺的碰撞反應。討論其可能產生的反應物、中間產物、過渡狀態、各種脫除反應後產物的結構,研究其可能發生的各種反應機制及路徑,進一步計算出各途徑的反應速率與各種產物之產率。在O(1D)+CH3OH的反應中,由實驗得知,激態氧原子會經由插入C-H、O-H鍵生成diol intermediate trans-CH2OHOH以及peroxide intermediate CH3OOH,其生成比例假設為1:1。活性的CH3OOH、trans-CH2OHOH在碰撞能量7.3 kcal/mol下,經由理論計算得知生成H、H2、CH3O、OH、H2CO、CH2OH及H2O之產率分別為1.19、0.56、21.24、31.32、13.93、10.08及17.29 %。經由速率常數可推得,CH3OOH是OH的主要來源,trans-CH2OHOH是H、H2O的主要來源。此外,17.29 %水的產率是不可忽略的。同時根據實驗的結果以及理論計算所得到的結果,我們可歸納O(1D)+CH3OH在7.3 kcal/mol的碰撞能下,不會進行第二階段分解反應。

關於O(1D)+CαH3NβHNδH2反應方面,假設O(1D)+CαH3NβHNδH2可形成CαH2OHNβHNδH2、CαH3ONβHNδH2、CαH3NβOHNδH2、CαH3NβHONδH2、CαH3NβHNδHOH 等5種中間物,其生成比例假設為3:1:1:1:2。經由理論計算得知生成主要碎片NH2、H2O、H2、CH2OHNNH、OH、CH3NHN及CH3NHNH之產率分別為4.89、29.6、6.47、6.47、6.57、20.2及5.33 %,佔了總產量的79.53 %。另外還有一些產率較低的碎片如:CH2OHNH、CH2NNH2、CHNHNH2、CH3、CH3NNH、CH3NH、CH3NHO、NHOH、CH2NHNH、CH3NNH2及ONH2,總共佔了總產率的20.47 %。整體來看,H2O、H2與OH自由基產率與先前所做同系列的計算不同,日後激態氧原子與聯胺類化合物的碰撞反應,H2O、H2與OH自由基應列為重要的偵測分子。

O(1D)+C2H6反應之同位素取代部分,除C2D5ODC2D5+OD以外,其他途徑的反應速率常數及產率皆因D取代而呈下降趨勢。與O(1D)+C2H6產率分布比較可知,CD3、OD等產物會因為D取代而使產率有較大的改變,CD3較CH3下降約1/3,而OD較OH增加約4.44倍。此外,D2O比H2O產率自26.8 %下降至22.8 %,這些數據的準確性在未來將可與實驗結果相互印證。
Abstract
In this present thesis, we used Quantum chemistry / RRKM theory to examine the reactions of O(1D)+CH3OH and O(1D)+CH3NHNH2. Studies of the possible geometries of reactant, intermediates, transition states and various products, allow us to understand reaction mechanisms and paths. furthermore, rate constants and product branching ratios of reaction channels can be derived. In O(1D)+CH3OH reaction, experiments show that excited oxygen atom can insert into C-H and O-H bonds to form diol intermediate trans-CH2OHOH and peroxide intermediate CH3OOH, respectively. According to experimental results, we assume the amount of CH3OOH is the same with trans-CH2OHOH. Calculation of the O(1D)+CH3OH reaction gave branching ratio of 1.19, 0.56, 21.24, 31.32, 13.93, 10.08 and 17.29 % for H, H2, CH3O, OH, H2CO, CH2OH and H2O, respectively. CH3OOH is the major source of OH fragment, and trans-CH2OHOH is the major source of H and H2O fragments. In addition, theoretical calculation predicted that a significant amount of H2O, 17.29%, can be produced in this reaction.

For the O(1D)+CαH3NβHNδH2 reaction, five long-lived complexes, CαH2OHNβHNδH2, CαH3ONβHNδH2, CαH3NβOHNδH2, CαH3NβHONδH2 and CαH3NβHNδHOH are expected. Ratio of their amounts are assumed to be 3:1:1:1:2, respectively. The calculation gave percentages of 4.89, 29.6, 6.47, 6.47, 6.57, 20.2 and 5.33 %. For the NH2, H2O, H2, CH2OHNNH, OH, CH3NHN and CH3NHNH, respectively, while the products like CH2OHNH, CH2NNH2, CHNHNH2, CH3, CH3NNH, CH3NH, CH3NHO, NHOH, CH2NHNH, CH3NNH2 and ONH2 present lower yield of insignificance. In contrast to previous studies, significant amounts of H2, H2O and OH were produced in the type of reactions between excited oxygen atom and hydrazine.

Finally, we examined the O(1D)+C2D6 reaction to examine isotope effect. Except for the reaction channel of C2D5OD(1D)C2D5+OD, all of the rate constants decrease due to the deuterium substitution. Comparing with O+C2H6 reaction, the product branching ratio of CD3 and OD change dramatically where production of CD3 dropped 30% while production of OD increase 4.4 times. Finally, their reaction produced 22.8 % of D2O, which is slighter less than 26.8 % of H2O produced in O(1D)+C2H6 reaction.
總目錄
圖目錄---------------------------------------------------------------iv
表目錄---------------------------------------------------------------vi
中文摘要-------------------------------------------------------------ix
英文摘要-------------------------------------------------------------xi

目錄

氧+甲醇及氧+甲基聯胺反應動力學 Quantum Chemistry/RRKM計算-------------------------1

第一章、緒論--------------------------------------------------------------1
1-1 簡介--------------------------------------------------------------------------1
1-2 研究目標-------------------------------------------------------------------9

第二章、計算理論原理及方法--------------------------------10
2-1 計算理論原理-----------------------------------------------------------10
2-1.1 密度泛函理論 (Density Functional Theory,DFT) ----------------10
2-1.2偶合叢集方法 (Coupled Cluster Methods,CC ) -------------------13
2-1.3 改良式G2高度準確能量方法(G2MP2 or G2M)--------------15
2-1.4 過渡狀態理論(Transition State Theory) ---------------------------16
2-1.5 變分過渡狀態理論
(Varitational Transition State Theory) ------------------------------17
2-1.6 RRKM理論(Rice-Ramsperger-Kassel-Marcus Theory)---------18
2-1.7 變分RRKM理論(Varitational RRKM Theory)-----------------20

2-2 計算方法------------------------------------------------------------------21
2-2.1 ab initio calculation-------------------------------------------------------21
2-2.2 RRKM與VRRKM 計算-----------------------------------------------22

第三章、計算結果與討論----------------------------------------24
第一部份、O(1D)+CH3OH反應動力學 Quantum Chemistry/RRKM計算----------------------24
3-1.1 trans-CH2OHOH及CH3OOH分解反應--------------------------24
3-1.2 trans-CH2OHOH及CH3OOH反應速率與產率-----------------28
3-1.3 H2O產物的發現------------------------------------------------------31

第二部份、O(1D)+ CαH3NβHNδH2反應動力學 Quantum Chemistry/RRKM計算----------------------45
3-2.1 位能面及反應機制---------------------------------------------------45
3-2.2 反應速率與產率------------------------------------------------------49
3-2.3 OH channel與H2 channel-------------------------------------------52
3-2.4 H2O channel -----------------------------------------------------------53

第三部份、Re-visited O+C2D6經C2D5OD分解之動力學Quantum Chemistry/RRKM計算----------------------98
3-3.1 C2H5OH與C2D5OD分解反應之異同-----------------------------98
3-3.2 D取代之分解路徑與速率常數k的討論-------------------------99
3-3.3 理論產率之比較----------------------------------------------------100

第四章、結論------------------------------------------------------------109

第五章、參考文獻----------------------------------------------------111
第五章 參考文獻

1. Sheng, L., Li, Z. S., Liu, J. Y., Xiao, J. F., Sun. C. C. J. Phys. Chem. A. 2002, 106, 12292.
2. Kerkeni, B., Clary, D. C. J. Phys. Chem. A. 2004, 108, 8966.
3. Zhu, R. S., Lin, M. C. J. Phys. Chem. A. 2003, 107, 3836.
4. Balucani, N., Cartechini, L., Casavecchia, P., Volpi, G. G., Aoiz, F. J., Banares, L., Menendez, M., Bian, W., Werner. H. J. Chem. Phys. Lett. 2000, 328, 500.
5. Hansen, J. C., Francisco, J. S., Szente, J. J., Maricq, M. M. Chem. Phys. Lett. 2002, 365, 267.
6. Braa, P., Menndez, B., Fernndez, T., Sordo, J. A. J. Phys. Chem. A. 2000, 104, 10842.
7. Canosa, A., Picard, S. D. L., Geppert. W. D., J. Phys. Chem. A. 2004, 108, 6183.
8. Zhou, X., Yu, S., Li, J., Sheng, Z., Zhang, L., Ma, X. Chem. Phys. Lett. 2002, 339, 117.
9. Says, R., Hijazo, J., Gilibert, M., Gonzlez, M. Chem. Phys. Lett. 1998, 284, 101.
10. Umemoto, H., Kimura, Y., Asai, T., Chem. Phys. Lett. 1997, 264, 215.
11. Li, L., Deng, P., Tian, A., Xu, M., Wong, N. B. J. Phys. Chem. A. 2004, 108, 4428.
12. Wang, L., Liu, J. Y., Li, Z. S., Sun, C. C. Journal of Computational Chemistry. 26, 2.
13. Thweatt, W. D., Erickson, M. A., Hershberger, J. F. J. Phys. Chem. A. 2004, 108, 74.
14. Meyer, J. P., Hershberger, J. F. J. Phys. Chem. B. 2005, 109, 8363.

15. Geppert, W. D., Eskola, A. J., Timonen, R. S., Halonen, L. J. Phys. Chem. A. 2004, 108, 4232.
16. Takahashi, M., Sakamoto, K. J. Phys. Chem. A. 2004, 108, 7301.
17. Zierhut, M., Roth, W., Fischer, I. J. Phys. Chem. A. 2004, 108, 8125.
18. Lin, C. K., Huang, C. L., Jiang, J. C., Chang, A. H. H., Lin, S. H., Lee, Y. T., Ni, C. K. J. Am. Chem. Soc. 2002. 124, 4068.
19. Hsu, Y. T., Wang, J. H., Liu, K. J. Chem. Phys. 1997, 107, 2351.
20. Hsu, Y. T., Liu, K. J. Chem. Phys. 1997, 107, 1664.
21. Jalbout, A. F. Chem. Phys. Lett. 2002, 365, 101.
22. Nakayama, T., Takahashi, K., Matsumi, Y. Chem. Phys. Lett. 2004, 398, 163.
23. Paraskevopouls, G., Cvetanovic, R. J. J. Chem. Phys. 1969, 50, 590.
24. Paraskevopouls, G.; Cvetanovic, R. J. J. Chem. Phys. 1970, 52, 5821.
25. Zhang, Q., Zhang, R. Q., Gu, Y. J. Phys. Chem. A. 2004, 108, 1064.
26. Lin, J. J., Lee, Y. T., Yang, X. J. Chem. Phys. 1998, 109, 2975.
27. Chang, A. H. H., Lin, S. H. Chem. Phys. Lett. 2002, 363, 175.
28. Shu, J., Lin, J. J., Lee, Y. T., Yang, X. J. Chem. Phys. 2001, 114, 4.
29. Shu, J., Lin, J. J., Lee, Y. T., Yang, X. J. Chem. Phys. 2001, 115, 849.
30. Shu, J., Lin, J. J., Lee, Y. T., Yang, X. J. Am. Chem. Soc. 2001, 123, 322.
31.王乙婷, 國立台灣師範大學碩士論文, 2002.
32.鄧乃偉, 國立台灣師範大學碩士論文, 2003.
33. Rudić, S., Murray, C., Ascenzi, D., Anderson, H., Harvey, J. N., Orr-Ewing, A. J. J. Chem. Phys. 2002, 117, 5692.
34. Umemoto, H., Kongo, K., Inaba, S., Sonoda, Y., Takayanagi, T., Kurosaki, Y. J. Phys. Chem. A. 1999, 103, 7026.
35. Park, J., Zhu, R. S., Lin, M. C., J. Chem. Phys. 2002, 117, 3224.
36. Kato, T., Kang, S. Y., Xu, X., Yamabe, T. J. Phys. Chem. B. 2001, 105, 10340.
37. So, S. P. J. Phys. Chem. A. 2002, 106, 3181.
38. Park, J., Xu, Z. F., Lin, M. C., J. Chem. Phys. 2003, 118, 9990.
39. Keil, D. G., Tanzawa, T., Skolnik, E. G., Klemm, R. B., Michael, J. V. J. Chem. Phys. 1981, 75, 2693.
40. Goldstein, N., Wiesenfeld, J. R. J. Chem. Phys. 1983, 78, 6725.
41. Matsumi, Y., Inagaki, Y., Kawasaki, M. J. Phys. Chem. 1994, 98, 3777.
42. Davidson, J. A., Schiff, H. I., Streit, G. E., McAfee, J. R., Schmeltekopf, A. L., Howard, C. J. J. Chem. Phys. 1977, 67, 5021.
43. Shu, J., Lin, J. J., Wang, C. C., Lee, Y. T., Yang, X. J. Chem. Phys. 2001, 115, 842.
44. Wang, L., Mebel, A. M., Yang, X., Wang, X. J. Phys. Chem. A. 2004, 108, 11644.
45. Vaghjiani, G. L. J. Phys. Chem. A. 2001, 105, 4682.
46.黃錦旋, 國立台灣師範大學碩士論文, 2005.
47. Frisch, M. J., Frisch, A., Foresman, J. B. Gaussian 98 User’s Reference.
48. Http://www.gaussian.com/
49. (a)Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b)Becke, A. D. J. Chem. Phys. 1992, 96, 2155. (c)Becke, A. D. J. Chem. Phys. 1992, 97, 9173. (d)Lee, C., Yang, W., Parr, R. G. Phys. Rev. 1988, B37, 785.
50. Jensen, F. Introduction to Computational Chemistry. 1999. Wiley, New York.
51. (a)Purvis, G. D., Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. (b)Sucseria, G. E., Janssen, C. L., Schaefer, H. F. J. Chem. Phys. 1988, 89, 7382. (c)Sucseria, G. E., Schaefer, H. F. J. Chem. Phys. 1989, 90, 3700. (d)Pople, J. A., Head-Gordon, M., Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
52. Mebel, A. M., Morokuma, K., Lin, M. C. J. Chem. Phys. 1995, 103, 7414.
53. (a)Mebel, A. M., Morokuma, K., Lin, M. C. J. Chem. Phys. 1995, 103, 7414. (b)Mebel, A. M., Morokuma, K., Lin, M. C., Melius, C. F. J. Chem. Phys. 1995, 99, 1900.
(c)Mebel, A. M., Morokuma, K., Lin, M. C. J. Chem. Phys. 1995, 103, 3440.
54. Steinfeld, J. I., Francisco, J. S., Hase, W. L. Chemical Kinetics and Dynamics. 1999. Prentice Hall, N.J.
55. Eyring, H., Lin, S. H., Lin, S. M. Basic Chemical Kinetics. 1980. Wiley, New York.
56. Butt, J. B. Reaction Kinetics and Reactor Design. 1980. P
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top