|
(1) Lander, E. S. et al. Initial sequencing and analysis of the human genome Nature 2001, 409, 860-921. (2) Venter, J. C. et al. The sequence of the human genome Science 2001, 291, 1304-1351. (3) Consortium., I. H. G. S. Finishing the euchromatic sequence of the human genome Nature 2004, 431, 931-945. (4) Stein, L. D. End of the beginning Nature 2004, 431, 915-916. (5) Honore, B. et al. Functional genomics studied by proteomics BioEssays 2004, 26, 901-915. (6) Aebersold, R. et al. Mass spectrometry in proteomics Chem. Rev. 2001, 101, 269-295. (7) Cohen, P. The regulation of protein function by multisite phosphorylation Trends Biochem. Sci. 2000, 25, 596-601. (8) Cohen, P. The role of protein phosphorylation in human health and disease Eur. J. Biochem. 2001, 268, 5001-5010. (9) Beausoleil, S. A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins PNAS 2004, 101, 12130-12135. (10) Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome Trend Biotechnol. 2002, 20, 261-268. (11) Vandergeer, P et al. Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates Electrophoresis 1994, 15, 544-554. (12) Sullivan, S. et al. A manual sequencing method for identification of 75 phosphorylated amino acids in phosphopeptides Anal. Biochem. 1991, 197, 65-68. (13) Fenn, J. B. et al. Electrospray ionization for mass spectrometry of large biomolecules Science 1989, 246, 64-71. (14) Tanaka, K. et al. Protein and polymer analyses up to m/z 100,000 by laser ionization time of flight mass spectrometry Rapid Commun. Mass Spectrom. 1988, 2, 151-153. (15) Karas, M. et al Laser Desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Int. J. Mass Spectrom. Ion Process 1987, 78, 53-68. (16) Chalmers et al. Identification and analysis of phosphopeptides J. Chromatogr. B 2004, 803, 111-120. (17) Reinders, J. et al. Challenges in mass spectrometry-based proteomics Proteomics 2004, 4, 3686-3703. (18) Pandy, A. et al. Analysis of receptor signaling pathways by mass spectrometry: identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 179-184. (19) Marcus, K. et al. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins Electrophoresis 2000, 21, 2622-2636. (20) Oda, Y. et al. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome Nat. Biotechol. 2001, 19, 379-382. (21) Resing, K.A. et al. Characterization of protease processing sites during conversion of rat profilaggrin to filaggrin Biochemistry 1993, 32, 10036-10045. (22) Jaffe, H. et al. Characterization of serine and threonine phosphorylation sites 76 in β-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching Biochemistry 1998, 37, 16211-16224. (23) Andersson, L et al. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 1986, 154, 250-254 (24) Ficarro, S. B. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae Nat. Biotechol. 2002, 20, 301-305. (25) Stensballe, A. et al. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis Proteomics 2001, 1, 207-222. (26) Stasyk, T. Zooming in: Fractionation strategies in proteomics Proteomics 2004, 4, 3704-3716.
|