跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳郡鳳
論文名稱:探討理想氣體動力論之建模教學對高一學生建構微觀氣體粒子運動心智模式的影響
指導教授:邱美虹邱美虹引用關係
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:科學教育研究所
學門:教育學門
學類:特殊教育學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:136
中文關鍵詞:心智模式氣體動力論迷思概念模型
相關次數:
  • 被引用被引用:7
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
現今台灣的高中化學教材對於氣體動力論的教學,侷限在計算解題的能力培養,教材呈現方式往往以公式、數據關係或實驗的推導來解釋氣體動力論,而忽略了氣體動力論微觀模型上的學習。本研究希望以微觀角度出發,幫助學生建立氣體動力論模型,進而解釋氣體分子的行為。並分析學生對氣體動力論的心智模式,探討不同教學內容對學生心智模式類型的影響。
本研究分三組進行教學,研究對象為台北市某高中一年級學生,為了完整收集研究對象在教學過程中心智模式的演進,並配合晤談資料的收集方便性,因此由研究者對於研究對象進行個別教學,教學之後隨即進行後測與晤談,以記錄研究對象在研究過程中心智模式的改變。
為探討巨觀教材與微觀粒子教材對學生學習氣體動力論的影響,本研究設置兩組「巨觀教材組」與「巨觀+微觀教材組」進行教學,分別討論學生在不同教材教學下,所產生的氣體動力論的學習成就與所形成的心智模式;另外為了進一步探討學生的建模能力對其氣體動力論心智模式的形成有何影響,另設置了「巨觀+微觀+模型教學組」,先進行建模教學,再進行氣體動力論教學。最後討論三組學生的學習成就與心智模式之差異。
研究結果發現本研究所使用之不同教材對學生學習成效有不同的影響,微觀教材組的學習成效大於巨觀教材組,表示微觀氣體粒子模型教學有助於學生學習學習氣體動力論的概念。學生在教學前對氣體行為有許多錯誤的解釋,在微觀教學之後,學生心智模式轉變成科學的模式,表示微觀氣體粒子模型教學有助於學生建立微觀氣體粒子運動的心智模式,用微觀粒子運動解釋氣體的巨觀行為。但在計算解題能力方面,本次三組教學後學生沒有進步。
另由模型問卷可發現,高一學生對本研究之模型問卷持有正向的態度。學生接受建模教材之後對模型的看法有所改變,認為模型可以用多樣化的各種方式呈現,只要能呈現出某個概念或想法即可視為模型。模型教學對高一學生學習氣體動力論的成效影響不大,只要使用微觀教材學生即可學習氣體動力論,因此本研究中微觀教材組與建模微觀教材組的學生在成就測驗表現相同,但建模教材的確有助於學生提升對模型的看法,轉向科學的模型態度。
The main focus of teaching kinetic theory of gases in high school chemistry curriculum is to emphasize on promoting algorithmic abilities. The teaching materials usually present the macro-view materials such as formula or experiment data to explain the kinetic theory of gases, not the use of gas models in microscopic perspective. The purpose of this study is to help students build microscopic gas models, and use them to learn the kinetic theory of gases. This study also analyses students’ mental models to investigate the influence of different teaching materials.
The participants in this study were thirty 10th high school students in Taipei. They were randomly assigned into three groups: 1.The macro-view group, using macro-view instructional materials; 2.The micro-view group, using both micro-view and macro-view instructional materials 3.The micro-view and modeling (MVM) group, using micro-view, macro-view instruction treatment and modeling materials. The researcher tutored all the students and interviewed them to obtain verbal data.
The results of this study were as follows: First, the micro-view group and the MVM group had better achievement in the kinetic theory of gases concepts test than macro-view group. But there were no difference effects in the algorithmic ability test. Second, students used different kinds of models to explain kinetic theory of gases. There were five major models: Scientific model, collide container/ wrong inference model, push model, particle collision model, weight model and outside model. Students’ mental models had consistency in different problem situation and different learning stages. After the instruction, students’ mental model changed into correct scientific model for both the micro-view group and the MVM group. Third, the modeling instrument helped the micro-view and modeling group students changed their view about models into a scientific perspective. They thought model could help them explain scientific phenomenon, formulate ideas and theories about scientific events, not simply a real object’s replica.
第壹章 緒論
第一節 研究動機………………………………………..……………………..1
第二節 研究目的與研究問題…………………………………………………2
第三節 名詞釋義……………………………………………………………....3
第四節 研究範圍與限制………………………………………………………3
第貳章 文獻探討
第一節 心智模式與模型………………………………………………………4
第二節 概念改變……………………………………………………..………10
第三節 學生氣體粒子概念研究……………………………………………..15
第四節 動態評量……………………………………………………………..20
第參章 研究方法
第一節 研究設計…………………………………………..…………………23
第二節 研究對象……………………………………………………………..24
第三節 氣體動力論概念……………………………………………………..25
第四節 研究工具……………………………………………………………..26
第五節 研究流程……………………………………………………………..35
第六節 資料處理與分析……………………………………………………..37
第肆章 研究結果與討論
第一節 三組學生前測答題表現分析…………………………………….…40
第二節 三組學生後測答題表現分析……………………………………….42
第三節 三組學生前後測答題表現比較分析……………………………….46
第四節 三組學生延宕後測答題表現分析………………………………….50
第五節 學生對模型的看法與其學習成就之差異………………………….54
第六節 學生在不同問題情境下所持有心智模式分析……………….……59
第七節 學生在學習歷程中心智模式演變的情形……………………….…98
第八節 學生對模型的觀點法………………………………………………123
第九節 建模教學對學生模型觀點的影響………………………………....129
第十節 微觀教學後學生之概念改變………………………………………132
第伍章 結論與建議
第一節 結論…………………………………………………………………134
第二節 建議………………………………………………………………....136
中文部份:
史嘉章(2002)。發展二階層試題以探討國高中學生氣體迷思概念。國立台灣師範大學科學教育研究所碩士論文(未出版)。
何佳燕(2001)。探討粒子概念對國二學生學習溫度與熱的學習成就與心智模式之影響。國立台灣師範大學科學教育研究所碩士論文(未出版)。
周天賜(1998)。動態評量:發展與改進兒童學習潛能的媒介式學習。台北:心理出版社。
邱美虹與翁雪琴(1995)。國三學生「四季成因」之心智模式與推理歷程之探討。科學教育學刊,3(1),23-68。
邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
邱美虹(2005)。台灣地區中小學生化學概念之心智模式與成因之研究(I)-子計畫二:台灣地區中學生「原子/分子/粒子、化學平衡、酸鹼鹽」結案報告(未出版)。
林素徽(2002)。國小高年級學童數感特徵暨數感動態評量發展之探討。國立台灣師範大學教育心理與輔導研究所碩士論文(未出版)。
邱顯博(2002)。國二、國三學生的擴散作用概念與概念改變之研究。國立台灣師範大學科學教育研究所碩士論文(未出版)。
洪振方(1987)。學生空氣體積及壓力之粒子模型概念與推理能力之相關研究。國立台灣師範大學化學研究所碩士論文(未出版)。
郭重吉,陳錦章和張惠博(1985)。協助國中學生學習正確物理概念的CAI教材軟體之設計實例─物質的分子模型。教育學院學報,10,219-233。
陳盈吉(2004)。探究動態類比對於科學概念學習與概念改變歷程之研究--以國二學生學習氣體粒子概念為例。國立台灣師範大學科學教育研究所碩士論文(未出版)。
劉家成(2003)。以動態評量探究國中學生浮力概念的心智模式及概念改變之歷程。國立台灣師範大學科學教育研究所碩士論文(未出版)。

英文部份:
Benson, D. L., Wittrock, M. C. & Baur, M. E. (1993). Students' preconceptions of the Nature of Gases. Journal of Research in Science Teaching, 30(6), 587-597.
Boulter, C.J. & Buckley, C.B. (2000). Constructing a typology of models for science education. In J. K. Gilbert & C. J. Boulter (eds.), Developing models in Science Education, (pp.41-57). Netherlands: Kluwer academic Publisher.
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples for learning and discovery in science. In R. Giere (eds.), Cognitive models of science: Minnesota Studies in the Philosophy of Science (pp.129-186). Minneapolis, MN: University of Minnesota Press.
Chi, M. T. H., Slotta, J. D. & Leeuw, N. (1994). From things to processes: a theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
Chi, M. T. H. (1997) Creativity: Shifting across ontological categories flexibly. In: T. B. Ward, S. M., Smith, & J. Vaid (Eds.) Creative Thought: An investigation of conceptual structures and processes (p. 209-234). Washington, DC: American Psychological Association.
Chi, M.T.H., & Roscoe, R.D. (2002). The processes and challenges of conceptual hange. In M. Limon and L. Mason (Eds). Reconsidering Conceptual Change: Issues in Theory and Practice. Kluwer Academic Publishers, The Netherlands, 3-27.
Chi, M. T. H. (2005). Common sense conceptions of emergent process. The Journal of the Learning Science, 14, 161-199.
de Berg, K. C. (1992). Students’ thinking in relation to pressure-volume changes of a fixed amount of air: the semi-quantitative Context. International Journal of Science Education, 14(3), 295-303.
de Berg, K. C. (1995a). Revising the Pressure-Volume Law in History- What Can It Teach Us About the Emergence of Mathematical Relationships in Science? Science and Education, 4, 47-64.
de Berg, K. C. (1995b). Student Understanding of the Volume, Mass, and Pressure of Air within a Sealed Syringe in Different States of Compression. Journal of Research in Science Teaching, 32(8), 871-884.
di Sessa, A. A. (1998). Knowledge in pieces. In G. Forman and P. B. Pufall (eds.), Constructivism in the computer age (pp. 49 -70). Hillsdale, NJ: Erlbaum Associates.
Duit, R. & Treagust, F. T.(2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
Eylon, B. S. & Linn, M. C. (1988). Learning and instruction: An examination of four research perspectives in science education. Review of Education Research, 58, 251–301.
Ferrari, M. & Chi, M. T. H. (1998) The Nature of Naive Explanations of Natural Selection. International Journal of Science Education, 20(10), 1231-1256.
Gilbert, J. K., Boulter, C.J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (eds.), Developing models in Science Education, (pp.3-17). Netherlands: Kluwer academic Publisher.
Grosslight, L., Unger, C., Jay, E. & Smith, C. (1991). Inderstanding models and their use in science: conceptions of middle and high school srudents and experts. Journal of research in science teaching, 28(9), 299-822.
Harison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509-534.
Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.
Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 469-499). Cambridge, MA: MIT Press.
Johnson-Laird, P. N. (1999). Formal rules versus mental models in reasoning. In R. J. Sternberg (Ed.), The nature of cognition (pp. 586-624). Cambridge, MA: MIT Press.
Kessler, K., Duwe, I., & Strohner, H. (1999). Subconceptual Dynamics in the Resolution of Reference in Discourse. In G. Rickheit& C. Habel (eds.), Mental Models in Discourse Processing and Reasoning. Elsevier: Amsterdam.
Lidz C.S.(1991). Dynamic Assessment Approach. In Flanagan, D. P., Genshaft, J. L., & Harrison, P. L. (Eds.). Contemporary intellectual assessment: theories, tests, and issues. (pp.281-pp.296). NY: Guilford.
Millar, R. (1990). Making sense: What use are particle ideas to children? In P. L. Lijnse, P. Licht, W. de Voss, & A. J. Waarlo, (eds.). Relating macroscopic phenomena to microscopic particles. The Netherlands: University of Utrecht.
Norland et al. (1974). A study of Levels of Concrete and Formal Reasoning Ability in Disadvantages Junior and Senior High School Science Students. Science Education, 58(4), 569-574.
Norman, D. A. (1983). Some observation on mental models. In D. Gentner & A. L. Stevens (eds.). Mentl Models, 7-14. Hillsdale, NJ: Erlbaum.
Novick, S. & Nussbaum, J. (1978). Junior High School Pupils' Understanding of the Particulate Nature of Matter: An Interview Study. Science Education, 62(3), 273-81.
Novik, S. & Nassusbaum, J. (1981). Pupils' Understanding of the Particulate Nature of Matter: A Cross-Age Study. Science Education, 65(2), 187-96.
Nassusbaum, S. & Novick, J, (1982). Alternative Frameworks, Conceptual Conflict and Accommodation: Toward a Principled Teaching Strategy. Instructional Science, 11(3), 183-200.
Renner, J. W. & Stafford (1972). Teaching Science in the Secondary School. New York, Harper and Row.
Saari, H. (2003). A research-based teaching sequence for thaching the concept of modeling to seventh-grade students. International journal of science education, 25(11), 1333-1352.
Strike, K. A. & Posner, G. J. (1992). A revisionist theory of conceptual change .In R. A. Duschl & R. J. Hamilton (eds.), Philosophy of science, Cognitive psychology, and educational theory and practice (pp. 147-176). Albany, NY: SUNY press.
Stevens, A. L., & Collins, A. (1980). Multiple conceptual models of a complex system. In R. E. Snow, P. Federico, & W. E. Montague (Eds.), Aptitude,Learning and instruction (Vol. 2).Hillsdale, NJ: Erlbaum.
Treagust, F. D., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
Vosniadou, S. & Brewer, W. F. (1992).Mental Models of the Earth: A Study of Conceptual Change in Childhood. Cognitive Psychology, 24(4), 535-85.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instructing, 4, 45-69.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top