(34.204.201.220) 您好!臺灣時間:2021/04/20 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃信瑀
研究生(外文):Hsin-Yu Huang
論文名稱:新型微機械式可變電容之設計與製作
論文名稱(外文):A novel design and fabrication of micromachined tunable capacitor
指導教授:楊啟榮楊啟榮引用關係程金保程金保引用關係
指導教授(外文):Chii-Rong YangChen-Pao Cheng
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:100
中文關鍵詞:可變電容SU-8光阻面型微加工品質因子射頻微機電系統
外文關鍵詞:tunable capacitorSU-8 photoresistorsurface micromachiningquality factorRF MEMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是設計與製作一新型微機械式可變電容,以改善傳統電子式變容器,其可調範圍較小、品質因子低、整合性不佳與寄生效應嚴重等缺點。然而,一般以靜電驅動之間距調整微機械式可變電容,其可動結構是以電鑄或沉積金屬薄膜方式製作,製程較為複雜,而本研究直接以黃光微影的方式,定義SU-8負型光阻以製作電容之可動結構,可簡化製程,此SU-8介電層也可使上電極板與基材有效絕緣以減少寄生效應,進而提升品質因子。本研究之新型微機械式可變電容,具有製程簡單、生產成本低、良率高等特點,除了可取代電子式變容器外,其整套製程也能與標準積體電路製程相容,因此有能力達成將微機械式可變電容與其他電子電路整合,實現系統單晶片(system on a chip, SOC)的目標。

本研究主要分為元件製程與訊號量測兩大部分:

1. 在元件製程上,成功地運用光阻犧牲層技術與犧牲層保護膜,製作出SU-8光阻之懸浮微結構。整個微機械式可變電容元件包括:下電極、光阻犧牲層、SU-8可動結構層與上電極,最後再將犧牲層移除,以完成元件製作。

2. 在訊號量測上,由電容電壓關係曲線得知,當頻率固定在2000 Hz時,此電容值變化是在外加偏壓為40伏特與無外加偏壓下的電容差值,則此元件具有0.3 pF的電容變化量。由史密斯圖得知,頻率從45 MHz至1.079 GHz的範圍內,此可變電容是電容性元件,其具有理想的品質因子,且等效電路為良好的開路。當頻率固定在1.079 GHz時,其輸入反射係數表示為S(1,1)=0.540/-176.102。
In this study, a novel design and fabrication of micromachined tunable capacitor can be completed, such that the drawbacks of traditional electrical varactor, like small tuning range, low quality factor, severe parasitic effect and poor integration, can be significantly improved. However, the fabrication process of general gap-tuning capacitors with electrostatic drive are complicated, because their movable structure are formed by electroforming or deposition procedure. In this study, the tunable capacitor and its movable structure can be realized by SU-8 lithographic technique, this SU-8 dielectric structure can decrease parasitic effect due to electrical insulation between upper and lower electrode plates and increase quality factor further. In this study, the novel micromachined tunable capacitor has the merits of simple fabrication process, low cost and high yield rate, which can replace the traditional electrical varactor and all of the fabrication process is fully compatible with CMOS process and able to integrate micromachined tunable capacitor and other electric circuit, which can be realize the goal of system on a chip.

In this study, it is mainly including of two parts-device fabrication and signal measurement:

1. In device fabrication, it is successfully using photoresistor sacrificial layer and sacrificial protection film to fabricate the suspension microstructures of SU-8 photoresistor. The entire micromachined tunable capacitor includes of lower electrode, photoresistor sacrificial layer, movable structure of SU-8 and upper electrode. The final step is to remove the sacrificial layer.

2. In signal measurement, according to the C-V curve, when the frequency is fixed to 2000 Hz, the capacitance differential is the subtraction of applied DC bias at 40 V and zero bias. And it comes to 0.3 pF of the capacitance differential. As Smith chart shows we can know that the tunable capacitor is capacitive device with good quality factor as well as the well open of equivalent circuit when the frequency is between the range from 45 MHz to 1.079 GHz. When the frequency is fixed to 1.079 GHz, the input reflection coefficient shows as S(1,1)=0.540/-176.102.
摘 要
總目錄
圖目錄
表目錄

第一章 緒論
1.1 前言
1.2 微機械式可變電容之發展簡介

第二章 文獻回顧
2.1 微機械式可變電容之分類
2.1.1 間距調整式可變電容
2.1.1.1 靜電驅動法
2.1.1.2 電熱驅動法
2.1.1.3 壓電驅動法
2.1.2 重疊面積調整式可變電容
2.1.3 可動介電層式可變電容
2.2 研究動機

第三章 設計原理與製程規劃
3.1 微機械式可變電容之設計原理
3.1.1 基本特性
3.1.1.1 品質因子
3.1.1.2 突衝效應
3.1.1.3 可調範圍
3.1.1.4 S參數
3.1.2 設計原理
3.2 微機械式可變電容之製程規劃
3.2.1 結構設計
3.2.2 製程規劃
3.3 製程設備與量測系統

第四章 實驗結果與討論
4.1 微機械式可變電容之元件製作
4.2 微機械式可變電容之訊號量測
4.2.1 突衝電壓量測
4.2.2 結構位移量測
4.2.3 電容電壓關係量測
4.2.4 S11參數量測

第五章 結論

參考文獻
1. 邢泰剛 等人, "微機電系統技術與應用", 精密儀器發展中心, 第十三章, pp. 1160-1164 (2003).

2. Clark T.-C. Nguyen, Linda P. B. Katehi and Gabriel M. Rebeiz, "Micromachined devices for wireless communication", Proceedings of the IEEE Vol. 86, No. 8, pp. 1756-1768 (1998).

3. Clark T.-C. Nguyen, "Communication application of microelectromechanical system", Proceedings, 1998 Sensors Expo, San Jose, CA, pp. 447-445 (1998).

4. Clark T.-C. Nguyen, "MEMS technologies for communications", Tech. Proceedings, 2003 Nanotechnology Conference and Trade Show, San Francisco, California, pp. 452-455 (2003).

5. J. Jason Yao, "RF MEMS from a device perspective", Journal of Micromech. Microeng., Vol. 10, pp. R9-R38 (2000).

6. D. J. Young and B. E. Boser, "A micromachined variable capacitor for monolithic low-noise VCOs", Solid-State and Actuator Workshop, pp. 86-89 (1996).

7. A. Dec and K. Suyama, "Microwave MEMS-based voltage-controlled oscillators", IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, pp. 1943-1949 (2000).

8. A. Dec and K. Suyama, "Micromachined electro-mechanically tunable capacitors and their applications to RF IC’s", IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, pp. 2587-2595 (1998).

9. Z. Feng, W. Zhang, B. Su, K. F. Harsh, K. C. Gupta, V. Bright and Y. C. Lee, "Design and modeling of RF MEMS tunable capacitors using electro-thermal actuators", IEEE MTT-S International Microwave Symposium Digest, pp. 1507-1510 (1999).

10. Z. Feng, H. Zhang, K. C. Gupta, W. Zhang, V. M. Bright and Y. C. Lee, "MEMS-based series and shunt variable capacitors for microwave and millimeter-wave frequencies", Sensors and Actuators A, Vol. 91, pp. 256-265 (2001).

11. K. F. Harsh, B. Su, W. Zhang, V. M. Bright and Y. C. Lee, "The realization and design consideration of flip-chip integrated MEMS tunable capacitor", Sensors and Actuators A, Vol. 80, pp. 108-118 (2000).

12. J. Y. Park, Y. J. Yee, H. J. Nam, and J. U. Bu, " Micromachined RF MEMS tunable capacitors using piezoelectric actuators", IEEE MTT-S International Microwave Symposium Digest, pp. 2111-2114 (2001).

13. J. J. Yao, S. T. Park, and J. DeNatale, "High tuning-ratio MEMS-based tunable capacitors for RF communication applications", Solid-State and Actuator Workshop, pp. 124-127 (1998).

14. J. J. Yao, S. T. Park, R. Anderson, and J. DeNatale, "A low power/low voltage electrostatic actuator for RF MEMS applications", Solid-State and Actuator Workshop, pp. 246-249 (2000).

15. J.-B. Yoon and C. T. Nguyen, "A high-Q tunable microelectromechanical capacitor with movable dielectric for RF applications", IEEE International Electron Devices Meeting, Technical Digest, pp. 489-492 (2000).

16. Gabriel M. Rebeiz, "RF MEMS Theory, Design, and Technology", John Wiley & Sons, Inc., pp. 382-331 (2003).

17. 袁帝文, 王岳華, 謝孟翰, 高頻通訊電路設計, 高立圖書有限公司 (2002).

18. Stephen D. Senturia, "Microsystem design", Kluwer Academic Publishers, pp. 134-137 (2001).

19. Nam-Trung Nguyen, Soon-Seng Ho and Cassandra Lee-Ngo Low, "A polymeric microgripper with integrated thermal actuators", Journal of Micromech. Microeng., Vol. 10, pp. 969-974 (2004).

20. In-hyouk Song and Pratul K Ajmera, "Use of a photoresist sacrificial layer with SU-8 electroplating mould in MEMS fabrication", Journal of Micromech. Microeng., Vol. 13, pp. 816-821 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔