跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐隆綾
研究生(外文):Lung-Ling Tang
論文名稱:微反應晶片應用於硒化鎘奈米微粒合成之研製
論文名稱(外文):DEVELPMENT OF MEMS-BASED MICROREACTOR FABRICATED FOR SYNTHESIZING COMPOSITE CdSe NANOPARTICLES
指導教授:楊啟榮楊啟榮引用關係謝佑聖謝佑聖引用關係
指導教授(外文):Chii-Rong YangYu-Sheng Hsieh
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:101
中文關鍵詞:硒化鎘奈米微粒微流體系統微反應晶片渾沌對流
外文關鍵詞:CdSe nanoparticlemicro fluidic systemmicroreactor chipchaotic advection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:530
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
奈米微粒(nanoparticles)由於粒子尺寸接近分子層級,受到強烈的量子侷限效應(quantum size confinement effect)規範,使其在各性質上顯現出截然不同於傳統塊材之特性,在眾多材料特性中,其吸收、放光光譜皆為粒子大小依憑性(size-dependent)最為顯而易見,此特性使得奈米微粒能廣泛應用於光電科技、生醫檢測方面的研究。因此近年來相關奈米微粒之製備,皆朝向高粒徑均勻度(monodispersity)、粒子大小可控性來發展。然而,透過化學藥品分散與包覆,奈米微粒的分佈寬度仍有一定極限,無法完全解決粒徑均勻度不佳之問題。
微流體系統具有快速質傳與熱傳特性的優點,應用於生化反應,如連鎖反應聚合脢(Polymerase Chain reaction, PCR)的微反應晶片,便有極優於傳統反應之表現。因此本研究目的即以微機電製程技術為基礎,製作一應用於合成硒化鎘奈米微粒之微反應晶片。與傳統巨觀反應器相較,微反應晶片因具有快速升溫降溫、溫度分佈均勻、濃度與反應時間容易控制等優點,預期能改善傳統合成法未能解決之粒徑分佈不均現象,並且精確的控制奈米粒子之粒徑大小;產量部分則藉由連續反應提升產量,達反應自動化與批次化生產的目的。本研究已建立一套製程,成功將微混合元件與微加熱元件,整合於全玻璃反應晶片上,並實際通入硒化鎘奈米微粒溶液進行合成,以驗證此微反應晶片之可行性。
Nanoparticles have been widely used in the fields of opto-electric and bio-inspecting technologies. The opto-electric characteristics of materials, e.g. absorbed and emitting spectrum, are significantly dependent to the size of the particles; therefore, the related techniques for preparing nanoparticle are requested to high monodispersity and controllability of particle diameters recently. However, the monodispersity of particle diameters is still a problem in present preparing techniques of nanoparticles.
Microfluidic system has the advantage of rapid mass transport and heat delivery. In this proposal, a MEMS-based microreactor chip will be developed to synthesize composite CdSe nanoparticles. This microreactor chip will integrate the functions of micro mixer, micro heater, continuous reaction. Compared with the traditional reactor, because microreactor has the merits of rapidly increasing and decreasing temperature, uniform temperature distribution, concentration and react time easily controlled, can significantly improve the drawbacks of poor monodispersity of particle diameters. Besides, the particle diameters can be precisely controlled by adjusting reaction parameters; batch production of nanoparticles will be also realized by continuous reaction and synthesis. We developed a glass deep-etching technique and integrated Pt micro heater and 3D micromixer on micro reactor devices. By using this device, CdSe nanoparticles can be produced and particle size can be adjusted by the temperature control.
摘要 Ⅰ
總目錄 Ⅲ
圖目錄 Ⅴ
表目錄 Ⅹ
符號對照表 XI
第一章 緒論 1
1.1 微機電系統與微反應晶片 1
1.2 奈米微粒簡介 5
1.2.1 奈米微粒之特性 5
1.2.2 奈米微粒之應用 6
第二章 文獻回顧 13
2.1 硒化鎘奈米微粒之合成 13
2.2 應用於化學合成之微反應器 19
2.3 研究動機與目的 24
第三章 微反應器之分析與設計 25
3.1 微管道之流體力學 25
3.1.1 微混合原理 26
3.1.2 微加熱與微溫度感測原理 28
3.2 微反應器晶片之設計 32
3.2.1 微混合器之設計 32
3.2.2 微溫控模組之設計 33
3.3 微混合區域之特性模擬 40
3.4 微混合區域之模擬結果 43
第四章 實驗製程與檢測規劃 49
4.1 微反應晶片之製程規劃 49
4.1.1 製程規劃 49
4.1.2 微反應晶片之特性檢測 51
4.1.3 奈米微粒之合成與粒徑分析 52
4.2 實驗設備與檢測系統 55
第五章 實驗結果與討論 65
5.1 微反應晶片製程 65
5.1.1 雷射加工玻璃流道製程 65
5.1.2 玻璃流道蝕刻製程 66
5.1.2.1 蝕刻罩幕之選擇 67
5.1.2.2 三種玻璃基材蝕刻特性之比較 68
5.1.2.3 退火處理抑制玻璃基材側蝕比 69
5.1.3 玻璃熔融接合 69
5.1.4 金屬加熱器與溫度感測電極製作 70
5.2 微反應晶片特性量測 87
5.2.1 混合效率測試 87
5.2.2 熱電阻加熱特性測試 87
5.2.3 微反應晶片合成硒化鎘奈米微粒 88
第六章 結論 95
6.1 本文結論 95
6.2 未來展望 96
參考文獻 97


圖 目 錄
Figure 1-1 Schematic of the lab on a chip function 4
Figure 1-2 Schematic successive fragmentation of a block of metal 9
Figure 1-3 Density of states as a function of energy in systems with different number of spatial dimensions 9
Figure 1-4 Pictures showing how three different quantum dots can produce 24 unique codes 11
Figure 1-5 (a) Quantum-dot LEDs; (b) The structure contains a single layer of CdSe quantum dots sandwiched between two organic thin films s 11
Figure 1-6 Cell labeling with quantum dots and illustration of quantum dot photostability, compared with the dye Alexa 488 12
Figure 2-1 Schematic of the nanoparticles preparation 16
Figure 2-2 Schematic of nucleation and growth during the preparation of monodisperse nanoparticles 17
Figure 2-3 Schematic of the nanoparticles preparation 17
Figure 2-4 Process of nanoparticles size selection 18
Figure 2-5 A microfluidic procedure for the production of CdS nanoparticles 22
Figure 2-6 Schematic of the flow reaction for CdSe nanoparticles 22
Figure 2-7 Microreactor channels in a 100 mm diameter glass wafer: (a) react directly in a serpentine 4.7 L channel; (b) be diluted before reacting in a 12.5 L channel. The nanoparticle product is diluted and quenched before exiting to a capillary flow cell 23
Figure 3-1 Transition mode of fluid 30
Figure 3-2 (Top) schematic of the three-dimensional serpentine channel, (middle) schematic of square-wave channel, (bottom) schematic of straight channel 30
Figure 3-3 Fabricating flow chart of microreactor and synthesis of CdSe nanoparticles 35
Figure 3-4 Schematic of microreactor 36
Figure 3-5 Schematic of 3-D micromixer 36
Figure 3-6 Entire view of five inch mask pattern layout 37
Figure 3-7 Schematic diagram of micromixer patterns 38
Figure 3-8 Schematic diagram of microheater position 38
Figure 3-9 Schematic diagram of microheater patterns 39
Figure 3-10 Solid model of 3-D micromixer 42
Figure 3-11 Mixing index in etch cross-section of the 3D serpentine channel for various cell number 45
Figure 3-12 Spatial variation of the ethanol concentration for various cell number with inlet flow rate 100 µl/min 46
Figure 3-13 Spatial variation of the ethanol concentration for various flow rate 47
Figure 3-14 Spatial variation of the ethanol concentration with an inlet flow rate of 50、100、200、600 and 1000 µl/min 48
Figure 4-1 Fabrication process of microreactor (laser ablation) 54
Figure 4-2 Fabrication process of microreactor (wet etching) 54
Figure 4-3 Lithography process equipments 59
Figure 4-4 Three target-gun with dual DC & RF power sputter 60
Figure 4-5 Optical microscope and image measurement system 61
Figure 4-6 Surface profiler 61
Figure 4-7 Zoom-variable optical microscope 62
Figure 4-8 Scanning electron microscope 62
Figure 4-9 Box furnace 63
Figure 4-10 Power supply 63
Figure 4-11 Dual-syringe infusion pump 64
Figure 5-1 Microchannel defined by laser ablation 72
Figure 5-2 SEM image of the laser-ablating channel 73
Figure 5-3 Microchannel defined by wet etching; (a) Upper microchannel 73
Figure 5-3 Microchannel defined by wet etching; (b) Lower microchannel 74
Figure 5-4 Pinholes were formed in Pyrex7740 when only Cr/Au was used as mask 74
Figure 5-5 Pinholes were formed in Pyrex7740 when S1813/Cr/Au was used as mask 75
Figure 5-6 No pinholes appear in the Pyrex7740 when AZ4620/Cr/Au was used as mask 75
Figure 5-7 SEM image of channels etched in Soda-lime 76
Figure 5-8 SEM image of channels etched in Pyrex 7740 76
Figure 5-9 SEM image of channels etched in Corning 1737 77
Figure 5-10 SEM image of channels etched in annealed Pyrex 7740 77
Figure 5-11 SEM image of channels wet etched in annealed Soda-lime 78
Figure 5-12 SEM image of channels wet etched in annealed Corning 1737 78
Figure 5-13 SEM image of microchannels defined by wet etching 79
Figure 5-14 Two glass flats aligned and clung to each other by DI water 80
Figure 5-15 Newton’s rings were formed after fusion bonding 81
Figure 5-16 A sealed microchannel was formed after fusion bonding 81
Figure 5-17 SEM micrograph of the bonding layer 82
Figure 5-18 Ripples formed by residual potoresist exist in Pt/Ti film 83
Figure 5-19 Pt/Ti was completely defined on rough surface 83
Figure 5-20 Pt/Ti was completely defined on smoother surface 84
Figure 5-21 Pt/Ti was completely defined on microractor 85
Figure 5-22 Photograph of mixing test 88
Figure 5-23 OM image of mixing test 88
Figure 5-24 IR image of microreactor 89
Figure 5-25 The highest temperature of microreactor 90
Figure 5-26 Distribution of temperature at microreactor 91
Figure 5-27 3D thermal distribution of microreactor 92
Figure 5-28 Congealed CdSe raw solution at room temperature 92
Figure 5-29 CdSe solution collected at 220 ℃, 240 ℃ and 260℃ 93
Figure 5-30 Top view of microeactor 93
Figure 5-31 CdSe products blocked up the microchannel 94
Figure 5-32 UV-Vis absorption spectra of obtained in CdSe products 94

表 目 錄
Table 1-1 Microfabrication technologies in MEMS field 3
Table 1-2 Changes of material properties 10
Table 1-3 Application of nanoparticle 10
Table 2-1 Method for preparation of nanoparticles 16
Table 3-1 Temperature coefficient of resistivity and thermal expansion coefficient of common metal 31
Table 3-2 Physical properties of ethanol and water 42
Table 3-3 Standard deviation of ethanol concentration for various cell number 44
Table 3-4 Standard deviation of ethanol concentration decreasing by chaotic advection 44
Table 4-1 Experimental facilities 57
Table 5-1 Wet etching results for three different material 71
Table 5-2 Wet etching results for three different materials with and without annealing 71
Table 5-3 Experimental parameters of sputtering Pt/Ti 71
1. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, 2003, 142-143.
2. Martin U. Kopp, Andrew J. de Mello, Andreas Manz, “Chemical amplification: continuous-flow PCR on a chip”, Science, 280, 1998, 1046-1048.
3. 李國賓, "下一波之生物晶片-微流體生醫晶片之應用及研發", 科學發展月刊, 385, 2003, 72-77.
4. 郭東瀛, "台灣產業應用奈米技術的借鏡",材料奈米技術專刊, 185, 2002, 78-92.
5. 奈米材料, 競逐原子世界第二輯, 經濟部, 2003.
6. Rudiger Memming, “Semiconductor electrochemistry”, Wiley-Veh, New York, 2001, 264-274.
7. A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals”, Journal of Physical Chemistry, 100, 1996, 13226-13239.
8. 吳明立, "微乳化系統製備雙金屬奈米粒子之研究", 國立成功大學博士論文, 台灣, 2001.
9. Shoude Chang, Ming Zhou, and Chander P. Grover, “Information coding and retrieving using fluorescent semiconductor nanocrystals for object identification”, Optics Express, 12, 2004, 143-148.
10. Seth Coe, Wing-Keung Woo, Moungi Bawendic, Vladimir Bulovi.,” Electroluminescence from single monolayers of nanocrystals in molecular organic devices”, Nature, 420, 2002, 800 - 803.
11. Xingyong Wu, Hongjian Liu, Jianquan Liu, Kari N. Haley, Joseph A.Treadway, J. Peter Larson, Nianfeng Ge, Frank Peale, and Marcel P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots”, Nature Biotechnology, 21, 2003, 41-46.
12. Paul Alivisatos, “The use of nanocrystals in biological detection”, Nature Biotechnology, 22, 2004, 47-52.
13. Naoki Toshima and Tetsu Yonezawa, “Nanoparticles - Novel Materials for Chemical and Physical Applications”, New Journal of Chemistry, 1998, 1179-1201.
14. C.D. Dushkin, S. Saita, K. Yoshie, Y. Yamaguchi, “The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix”, Advances in Colloid and Interface Science, 88, 2000, 37-78.
15. Victor K. La Mer and Robert H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols”, Journal of the American Chemical Society, 72, 1950, 4847-4854.
16. Andrey L. Rogach, Andreas Kornowski, Mingyuan Gao, Alexander Eychmuller, and Horst Weller, “Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals”, The Journal of Physical Chemistry B , 103, 1999, 3065-3069.
17. Moulik, S. P. and Paul, B. K., “Structure, dynamics and transport properties of microemulsions”, Advances in Colloid and Interface Science, 78, 1998, 99-195.
18. Gary L. Messing, Shin-ichi Hirano, and Hans Hausner, “Ceramic powder science III”, American Ceramic Society, 1990.
19. Thomas Schwalbe, Volker Autze, Gregor Wille, “Chemical synthesis in microreactors”, CHIMIA, 56, 2002, 636-646
20. John and Andrew deMello, “Microscale reactors: nanoscale products”, Lab on a Chip, 4, 2004, 11N-15N.
21. Joshua B. Edel, Robin Fortt, John C. deMello and Andrew J. deMello, “Microfluidic routes to the controlled production of nanoparticles”, Chemical Communications, 10, 2002,1136–1137.
22. Hiroyuki Nakamura, Yoshiko Yamaguchi, Masaya Miyazaki, Masato Uehara, Hideaki Maeda, and Paul Mulvaney, “Continuous Preparation of CdSe Nanocrystals by a Microreactor”, Chemistry Letters, 31, 2002, 1072–1073.
23. Hiroyuki Nakamura, Yoshiko Yamaguchi, Masaya Miyazaki, Hideaki Maeda, Masato Uehara and Paul Mulvaney, “Preparation of CdSe nanocrystals in a micro-flow-reactor”, Chemical Communications, 23, 2002, 2844–2845.
24. Hongzhi Wang, Xianying Li, Masato Uehara, Yoshiko Yamaguchi, Hiroyuki Nakamura, Masaya Miyazaki, Hazime Shimizu and Hideaki Maeda, “Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor”, Chemical Communications, 1, 2004, 48-49.
25. Hiroyuki Nakamura, Asuka Tashiro, Yoshiko Yamaguchi, Masaya Miyazaki, Takanori Watari, Hazime Shimizua and Hideaki Maeda, “Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis”, Lab on a Chip, 4, 2004, 237-240.
26. Emory M. Chan, Richard A. Mathies, and A. Paul Alivisatos, “Size-controlled growth of CdSe nanocrystals in microfluidic reactors”, Nano Letters, 3, 2003, 199–201.
27. 王奕婷, "流體在微渠道流動之數值模擬", 國立中山大學碩士論文, 台灣, 2003.
28. John K. Vennard, Robert L. Street, “Elementary fluid mechanics”, Wiley-Veh, New York, 1982.
29. George Friedrich Wislicenus, “Fluid mechanics of turbomachinery”, Dover Publications, McGraw-Hill, New York, 1965.
30. Ho, C-M, Tai, Y-C, Micro-electro-mechanical system (MEMS) and fluid flows, Annual Review of Fluid Mechanics, 30, 1998, 579-612.
31. Ho, C-M, Tai, Y-C, MEMS and its application for flowcontrol, Journal of Fluids Engineering, 118, 1996, 437-447.
32. John Evans, Dorian Liepmann, Albert P. Pisano, “Planar laminar mixer”, Proceedings of the IEEE Micro Electro Mechanical Systems, Nagoya, Japan, 1997, 96-101.
33. R. M. Moroney, R. M. White and R. T. Howe, “Ultrasonically induced microtransport”, Proceedings of the IEEE Micro Electro Mechanical Systems, Nara, Japan, 1991, 277-282.
34. S. Böhm, K. Greiner, S. Schlautmann, S. de Vries and A. van den Berg, “A rapid vortex micromixer for studying high-speed chemical reactions”, Proceedings of the µ-TAS 2001 Symposium, 2001, 25-27.
35. M. H. Oddy, J. G. Santiago and J. C. Mikkelsen, “Electrokinetic instability micromixers”, Proceedings of the -TAS 2001 Symposium, 2001, 34-36.
36. H. Aref, “Stirring by chaotic advection”, Journal of Fluid Mechanics, 143, 1984, 1-21.
37. Chun-Ping Jen, Chung-Yi Wu, Yu-Cheng Lin and Ching-Yi Wu, “Design and simulation of the micromixer with chaotic advection in twisted microchannels”, Lab on a Chip, 3, 2003, 77-81.
38. J. M. Ottino, “The kinematics of mixing: stretching, chaos, and transport,” Cambridge University Press, New York, 1989.
39. S. W. Jones, O. M. Thomas and H. Aref, “Chaotic advection by lamina flow in a twisted pipe,” Journal of Fluid Mechanics, 209, 1989, 335-357.
40. Robin H. Liu, Mark A. Stremler, Kendra V. Sharp, Michael G. Olsen, Juan G. Santiago, Ronald J. Adrian, Hassan Aref, and David J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel”, Journal of Microelectromechanical System, 9, 2000, 190-197.
41. R. H. Liu, M. Ward, J. Bonanno, D. Ganser, M. Athavale and P. Grodzinski, “Plastic in-line chaotic micromixer for biological applications,” Proceedings of the -TAS 2001 Symposium, 2001, 163-164.
42. Frederick J. Bueche, David A. Jerde, “Principles of physics”, McGraw-Hill, New York, 1995.
43. M Koch, K Witt, A G Evans, A Brunnschweiler, “Improved characterization technique for micromixers”, Journal of Micromechanics and Microengineering, 9, 1999, 156-158
44. Minqiang Bu, Tracy Melvin, Graham J. Ensell, James S. Wilkinson, Alan G.R. Evans, “A new masking technology for deep glass etching and its microfluidic application”, Sensors and Actuators A: Physical, 115, 2004, 476-482.
45. 李啟甲, "功能玻璃", 化學工業出版社, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top