跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃振瑋
研究生(外文):Cheng-Wei Huang
論文名稱:注射進入的自由態蝦紅素與維生素A在白蝦體內轉換的模式探討
論文名稱(外文):A Modelling Approach on the Conversion of Injected Free Astaxanthin and Vitamin A in the body of Litopenaeus vannamei
指導教授:陳瑤湖陳瑤湖引用關係
指導教授(外文):Yew-Hu Chien
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:106
中文關鍵詞:蝦紅素維生素A甲殼類注射轉換白蝦
外文關鍵詞:astaxanthinvitamin Acrustaceaninjecttransformwhite shrimpLitopenaeus vannamei
相關次數:
  • 被引用被引用:2
  • 點閱點閱:609
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
維生素A(vitamin A, VA)對於甲殼類的生理功能已有較完整的瞭解,並已認定為成長必需的營養素。蝦紅素(astaxanthin, AX)為類胡蘿蔔素(carotenoids, CD)的一種,在甲殼類中除較受重視的揚色功能外,其他生物功能中尤以提升抗氧化及抗緊迫的能力也越來越受重視。各種CD間及CD轉換成VA已有較多的研究,而VA是否能轉換成AX則並不清楚。甲殼類體內的AX與VA,在揚色及其他生物功能上是否能相互替代一直是值得探討的主題。
為了要瞭解AX與VA之間是否有轉換的關係,我們將4種濃度(0、1、2及4μg/g b.w.)的自由態AX(free astaxanthin, FA)或VA注射進入白蝦,不給予餵食,並測定7日間蝦體內各式AX及VA的含量,以探討其間的動態關係。
結果發現白蝦體中的AX以雙酯化AX(diester astaxanthin, DA)及單酯化AX(monoester astaxanthin, MA)為主,約佔總AX(total astaxanthin, TA)的94%,FA僅約佔TA的6%。由於FA及VA注射量已很不確定,所以可從蝦體各式AX及VA的減少量來比較其代謝速率,其結果為AX的代謝速率較VA快,且AX中FA及MA代謝速率較DA快,推測FA為功能型的AX,DA為較穩定的儲存型的AX,而MA為過渡型的AX。注射FA後,隨時間增加,蝦體中FA減少,相對的VA上升;因此在第1天時,據估計1莫耳的FA約可以轉換成7.5莫耳的VA。注射VA後,蝦體中的FA及MA皆會上升,表示VA可能會轉變成AX;在第1天時,據估計1莫耳的VA約可以轉換成0.1莫耳的FA。
本研究AX與VA係經注射而輸入至蝦體中,至於在甲殼類飼料的營養及成本效益的應用上,尚待進一步的探討,以符合實際狀況。
The knowledge of physiological functions of vitamin A (VA) in crustaceans is relatively well established as compared to those of carotenoids (CD). VA is already recognized as a nutritional requirement for growth. Astaxanthin (AX) is one kind of CD. In crustacean, besides its roles on pigmentation, its physiological functions, especially on the enhancement of antioxidant capacity and stress resistance has received increasing attention. Numerous studies have been conducted on the transformation between the CD and the conversion from CD to VA; however, whether VA can be converted into AX is not clear. In crustaceans, if AX and VA are exchangeable or substitutable in terms of pigmentation and other physiological functions has become an interesting area to be explored.
To understand if AX and VA are convertible between each other, we injected 4 concentrations (0, 1, 2, and 4 μg/g body weight) of free astaxanthin (FA) or VA into white shrimp (Litopenaeus vannamei) and monitored closely the content of several types of AX and VA for the following 7 days to find out relationships among them. No food was given during the monitoring.
The results showed about 94% of the total AX (TA) was presented as diester astaxanthin (DA) and monoester astaxanthin (MA); the rest was FA. Since the quantity of injected FA or VA was sure, the metabolism of them could be understood by comparing the changes among each AX and VA. It was found that the metabolism of AX was faster than VA, and among the AX, FA and MA was faster than DA. We suggested that FA be functional AX, DA depositional AX, and MA transitional AX. Since after FA was injected, the decrease of FA corresponded to the increase of VA as time elapsed, it could be estimated that 1 mole FA be transformed to 7.5 mole VA in the first day. Through the same method, it was estimated that 1 mole VA be transformed to 0.1 mole FA in the first day.
In this study, AX and VA was injected into shrimp body of shrimp. The results remained to be confirmed by feeding experiment for the practical application on crustacean feed and nutrition and cost-benefit analysis.
謝辭…………………………………………………………………………i
中文摘要………….………………………………………………..............ii
英文摘要…………………………………………………………………..iii
目錄…………………………………………………………………..….…v
表目錄……………………………………………...………………….…viii
圖目錄…………………………………………………………………….xii
略語表…………………………………………………………...……….xiv
一、前言…………………………………………………………………..1
二、文獻整理……………………………………………………………..3
1. 維生素A(VA)與類胡蘿蔔素(CD)簡介……………..……3
2. VA與CD的代謝……………………………………………..…..3
3. CD轉換成VA之情形……………………………………………5
4. CD的分布………………………………………………………...7
5. 蝦紅素(AX)簡介……………………….……………..………8
6. AX的轉換……………………………………….………………..8
三、材料與方法…………………………………………….…………….11
1. 實驗設計…………………………………………………...…….11
2. 注射液配製……………………………………………………....11
2.1 自由態AX(FA)的配製…………………………………...11
2.2 VA的配製………………………………………………….....11
3. 白蝦注射實驗……………………………………………………12
4. AX的萃取及分析……………….……………………………..…13
4.1標準品………………………………………………………...13
4.2 蝦體樣品的萃取與分析……………………………………..13
4.3 HPLC分析條件與操作步驟…………………………………14
4.3.1 分析系統………………………….……………………14
4.3.2 HPLC操作條件…………………….…..………………14
4.3.3 HPLC 操作步驟………………………………………..14
5. VA的萃取與分析………………………………………………...15
5.1 標準品……………………………………………………..…15
5.2 蝦體樣品的萃去與分析………….………………………….15
5.3 HPLC分析條件與操作步驟……………………..…………..16
5.3.1 分析系統……………………………………………….16
5.3.2 HPLC操作條件……………………………………...…16
5.3.3 HPLC操作步驟……………………………………...…16
6. 統計分析………………………………………………………....17
6.1 變方分析……………………………………………………..17
6.2 實驗模式建構………………………………………………..17
四、結果………………………………………………………………….18
1. 為注射組與注射生理食鹽水組兩組各式AX及VA的比較.…18
2. 注射FA後蝦體各式AX及VA的變化………………………..18
3. 注射VA後蝦體各式AX及VA的變化…………………..……20
4. 注射FA後蝦體各式AX及VA的實驗模式……………………21
5. 注射VA後蝦體各式AX及VA的實驗模式…………………..24
五、討論…………………………………………………………………..26
1. 實驗方法…………………………………………………………26
1.1為何使用注射方式…………………………………..……….26
1.2 注射對蝦體的影響………….……………………………….26
1.3 當量之使用………………………………….……………….27
2. 蝦體中DA、MA、FA及VA的含量分布………………...……….27
3. 輸入FA之轉變…………………………………….…………….28
3.1 各式AX及VA隨時間的變化………………………………28
3.2 各式AX及VA隨注射濃度的變化…………………………29
3.3 實驗模式…………………………………………………..…30
4. 輸入VA之轉變………………………………………………….31
4.1 各式AX及VA隨時間的變化……………………………...32
4.2 各式AX及VA隨注射濃度的變化………………………….32
4.3 實驗模式……………………………………………………..33
5. 輸入FA與輸入VA之比較……………………………………..34
六、結論………………………………………………………………….36
七、參考文獻……………………………………………………………..37
Alava, V.R., Kanazawa, A., Teshima, S.I., Koshio, S., 1993. Effect of dietary vitamin A, E and C on the ovarian development of Penaeus japonicus. Nippon Suisan Gakkaishi 59, 1235-1241.

Andrewes, A.G., Phaff, H.J., Starr, M.P., 1976. Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry 15, 1003-1007.

Barimalaa, I.S., Gordon, M.H., 1988. Cooxidation of β-carotene by soybean lipoxygenase. Journal of Agricultural and Food Chemistry 36, 685-687.

Barua, A.B., Goswami, U.C., 1977. Formation of vitamin A in a freshwater fish. The Biochemical Journal 164, 133-136.

Barua, A.B., Olson, J.A., 2000. β-carotene is converted primarily to retinoids in rats in vivo. The Journal of Nutrition 130, 1996-2001.

Castillo, R. Negre-Sadargues, G., Lenel, R. 1989. The carotenoids of the hermit crab, clibanarius erythropus during the moulting cycle-II. Qualitative aspects. Comparative Biochemistry and Physiology 92A, 111-115.

Chen, S.Q., Li, A.J., 1994. Investigation on nutrition of vitamin A for shrimp Penaeus chinensis: 1. Effects of vitamin A on shrimp’s growth and visual organ. Acta Zoologica Sinica/Dongwu Xuebao. Beijing 40, 266-273.

Chien, Y.H., Chen, I.M., Pan, C.H., Kurmaly, K., 1999. Oxygen depletion stress on mortality and lethal course of juvenile tiger prawn Penaeus monodon fed high level of dietary astaxanthin. Journal of the Fisheries Society of Taiwan 26 (2), 85-93.

Chien, Y.H., Liao, H.H., Wang, C.C., 1991. Coloration and growth of Artemia under various diets. Journal of the Fisheries Society of Taiwan 26 (2), 85-93.

Chien, Y.H., Pan, C.H., Hunter, B., 2003. The resistance to physical stresses by Penaeus monodon juveniles fed diets supplemented with astaxanthin. Aquaculture 216, 177-191.

Christiansen, R., Torrissen, O.J., 1996. Growth and survival of Atlantic salmon, Salmo salar L. fed different dietary levels of astaxanthin. Aquaculture Nutrition 2, 55-62.

Coral-Hinsotroza, G.H., Bjerkeng Bjørn, 2002. Astaxanthin from the red crab langostilla (Pleuroncodes planipes) : optical R/S isomers and fatty acid moieties of astaxanthin esters. Comparative Biochemistry and Physiology 133B, 437-444.

D`Abramo, L.R., Baum, N.A., Bordner, C.E. and Conlline, D.E., 1983. Carotenoid as a source of pigmentation in juvenile lobster. Canadian Journal of Fisheries and Aquatic Sciences 40, 699-704.

Dall, W., Smith, D. M., Moore, L. E., 1995. Carotenoids in the tiger prawn Penaeus esculentus during ovarian maturation. Marine Biology 123, 435-441.

Del Tito, B.J., 1983. Role of beta-carotene and lutein in the synthesis of vitamin A in goldfish. Progressive Fish Culturist 45, 94-97.

Fisher, L.R., Kon, S.K., Thompson, S.Y., 1952. Vitamin A and carotenoids in certain invertebrates. I Marine Cruatacea. Journal of the Marine Biological Association of the United Kingdom 31, 229-258.

Guillou, A., Choubert, G., Storebakken, T., De La Noüe, J., Kaushik, S., 1989. Bioconversion pathway of astaxanthin into retinol in mature rainbow trout (Salmo gairdneri Rich.). Comparative Biochemistry and Physiology 94B, 481-485.

He, H., Lawrence, A.L., Liu, R., 1992. Evaluation of dietary essentiality of fat-soluble vitamins, A, D, E and K for penaeid shrimp (Penaeus vannamei). Aquaculture 103, 177-185.

Hwang, D.F., Lin, M.F., Cheng, H.M., 1995. Determination of vitamin A level in Taiwanese fish. Journal of the Chinese Nutrition Society 20 (4), 341- 351.

Katayama, T., Hirata, K., Chichester, C.O., 1971. The biosynthesis of astaxanthin-IV. The carotenoids in the prawn Penaeus japonicus Bate (Part I). Bulletin of the Japanese Society of Scientific Fisheries 37, 614-620.

Katayama, T., Katama, T., Chichester, C.O., 1972a. The biosynthesis of astaxanthin, 6, the carotenoids in the prawn, Penaeus japonicus Bate II. The International Journal of Biochemistry 3, 363-368.

Katayama, T., Katama, T., Shimaya, M., Deshimaru, O. and Chichester, C.O., 1972b. The Biosynthesis of Astaxanthin-VIII. The conversion of labeled β-carotene-15,15’-3H2 into astaxanthin in prawn, Penaeus japonicus Bate. Bulletin of the Japanese Society of Scientific Fisheries 35, 1171-1175.

Katsuyama, M., Matsuno, T., 1988. Carotenoid and vitamin A, and metabolism of carotenoids, β-carotene, canthaxanthin, zeaxanthin, lutein and tunaxanthin in tilapia (Tilapia nilotica). Comparative Biochemistry and Physiology 90B, 131-139.

Khachik, F., Beecher, G.R., Whittaker, N.F., 1986. Separation, idetification, and quantification of the major carotenoid and chlorophyll constituents in extracts of several green vegetables by liquid chromatography. Journal of Agricultural and Food Chemistry 34, 603-616.

Krinsky, N.I., Mayne, S.T., 2000. Current views on carotenoids: biology, epidemiology and trials, In: Livrea, M.A. (Ed.), Vitamin A and Retinoids: An Update of Biological Aspects and Clinical Applications. Birkhäuser Verlag, Basel, Switzerland, pp. 45-57.

Lim, L. C., Chao, T. M., 1990. Observations on the moult staging in banana shrimp, Penaeus merguiensis de man. Singapore Journal of Primary Industry 18, 34-47.

Liñán-Cabello, M.A., Medina-Zendejas, R., Sánchez-Barajas, M., Mena Herrera, A., 2004. Effects of carotenoids and retinal in oocyte maturation of crayfish Cherax quadrucarinatus. Aquaculture Research 35, 905-911.

Liñán-Cabello, M.A., Paniagua-Michel, J., Hopkins, P.M., 2002. Bioactive roles of carotenoids and retinoids in crustaceans. Aquaculture Nutrition 8, 299-309.

Liñán-Cabello, M.A., Paniagua-Michel, J., Zenteno-Savín, T., 2003. Carotenoids and retinal levels in captive and wild shrimp, Litopenaeus vannamei. Aquaculture Nutrition 9, 383-389.

Matsuno, T., Hirao, S., 1989. Marine carotenoids. In: Ackman, R.G. (Ed.), Marine Biogenic Lipids, Fats, and Oils, vol. 1. CRC Press, Boca Raton, FL, pp. 251-388.

Matsuno, T., Maoka, T., Katsuyama, M., Ookubo, M., Katagiri, K., Jimura, H., 1984. The occurrence of enantiomeric and meso-astaxanthin in aquatic animals. Bulletin of the Japanese Society of Scientific Fisheries 50, 1589-1592.

McCollum, E.V., Davis, M., 1913. The necessity of certain lipids in the diet during growth. Journal of Biological Chemistry 15, 167-175.

McLaren, D.S. and Frigg, M. 2001. Sight and Life Manual on Vitamin A Deficiency Disorders (VADD). Secretary, Task Force SIGHT AND LIFE, Basel, Switzerland.

Merchie, G., Kontara, E.K., Lavens, P., Van Duffel, H., Kuemaly, K., Sorgeloos, P., 1998. Effect of Vitamin C and astaxanthin on stress and disease resistance of postlarval Penaeus monodon (Fabricius). Aquaculture Research 29, 579-585.

Meyers, S.P., Chen, H.M., 1982. Astaxanthin and its role in fish culture. Proceedings of the Warmwater Fish Culture Workshop. Special Publication Series No. 3. In: Stickney, R.R. and Meyers, S.P.(Eds.), Charlestion, South Carolina, pp. 153-165.

Neilands, J.B., 1947. The conversion of carotene to vitamin A in the fish. Archives of Biochemistry and Biophysics 13, 415-419.

Olson, J.A., 1989. The provitamin A function of carotenoids: the conversion of beta-carotene into vitamin A.The Journal of Nutrition 119, 105-108.

Olson, J.A., 2000. Requirements and safety of vitamin A in humans. In: Livrea, M.A.(Ed.), Vitamin A and Retinoids: An Update of Biological Aspects and Clinical Applications. Birkhäuser Verlag, Basel, Switzerland, pp. 29-43.

Paik, J., Vogel, S., Quadro, L., Piantedosi, R., Gottesman, M., Lai, K., Hamberger, L., de Morais Vieira, M., Blaner, W.S., 2004. Vitamin A: Overlapping delivery pathways to tissues from the circulation. The Journal of Nutrition 134, 276-280.


Pan, C.H., Chien, T.H., cheng, J.H., 1999. Carotenoids content in various tissues of cultured Penaeus monodon by their sizes, sexes and molting stages. Journal of the Fisheries Society of Taiwan 26, 51-57.

Pangantihon-Kuhlmann, M.P., 1998. Effect of dietary astaxanthin and Vitamin A and the reproductive. Aquatic Living Resources 11 (6), 403-409.

Pauling, L., 1939. Recent work on the configuration and electronic structure of molecules; with some applications to natural products. Fortschritte der Chemie Organischer Naturstoffe 3, 203-235.

Petit, H., Negre-Sadargues, G., Castillo, R., Trilles, J., 1997. The effects of dietary astaxanthin on growth and moulting cycle of postlarval stages of the prawn Penaeus japonicus (Crustacea, Decapoda). Comparative Biochemistry and Physiology 117A, 539-5540.

Schwartz, S.J., Patroni-Killam, M., 1985. Detection of cis-trans carotene isomers by two-dimensional thin-layer and high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 33, 1160-1163.

Shiau, S.Y., Chen, Y., 2000. Estimation of dietary vitamin A requirement of juvenile grass shrimp, Penaeus monodon. The Journal of Nutrition 130, 90-94.

Simpson, K.L., 1982. Carotenoids pigment in sea food. In: R.E. Martin, G.J. Flick, and D.R. Ward (Eds.), Chemistry and Biochemistry of Marine Food Products. AVI Publishing Company, Westport, CT, 115-136.

Storebakken, T., No, H.K., 1992. Pigmentation of rainbow trout. Aquaculture 100, 209-229.

Tanaka, Y., Katayama, T., Simpson, K.L., Chichester, C.O., 1976a. The biosynthesis of astaxanthin-XX. The carotenoids in marine red fish and metabolism of the carotenoids in sea bream, Chrysophrys major Temminck and schlegel. Bulletin of the Japanese Society of Scientific Fisheries 42, 1177-1182.

Tanaka, Y., Matsuguchi, H., Katayama, T., Simpson, K.L. and Chichester, C.O., 1976b. The biosynthesis of astaxanthin-XVIII. The metabolism of the carotenoids in the prawn, Penaeus japonicus Bate. Bulletin of the Japanese Society of Scientific Fisheries 42, 197-202.

Yamada, S., Tanaka, Y., Sameshima, M., Ito, Y., 1990. Pigmentation of prawn (Penaeus japonicus) with carotenoids. I. Effect of dietary astaxanthin, β-carotene and canthaxanthin on pigmentation. Aquaculture 87, 323-330.

Yamashita, E., Arai, S., Matsunno, T., 1996. Metabolism of xanthophylls to vitamin A and new apocarotenoids in liver and skin of black bass, Micropterus salmoides. Comparative Biochemistry and Physiology 113B, 485-489.

王姿穎, 2004. 草蝦稚蝦之β-胡蘿蔔素利用及其與維生素A間之轉換之探討. 國立台灣海洋大學養殖系碩士論文.

黃志忠, 2002. 飼糧蝦紅素與維生素A對草蝦體內蝦紅素與維生素A組成的共同影響. 國立台灣海洋大學養殖系碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊